Next Generation Solid-State Batteries
下一代固态电池
基本信息
- 批准号:EP/P003532/1
- 负责人:
- 金额:$ 221.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solid-state Li-ion batteries (SSLBs) represent the ultimate in battery safety, eliminating the flammable organic electrolyte. The SSLB would find potential uses in industries where battery safety is paramount, such as the automotive industry (in cars, e-bikes and buses) and also in smaller applications where the elimination of the liquid electrolyte results in more ready compatibility with other devices, e.g., a battery on a chip or sensor. These batteries can compete with traditional lithium ion batteries in terms of volumetric energy density but they suffer from low power density. Very recently several viable inorganic solid Li-ion conducting electrolytes been identified with conductivities approaching those of liquids, which motivates this research proposal. Strategies for lowering interfacial resistances, particularly between the electrolyte and electrodes, and for building inherently scaleable devices that can be cycled multiple times, without mechanical failure, are now urgently required to produce practical devices.This multi-institutional project brings together experienced, world-leading researchers from the University of Cambridge, the University of Oxford, and Imperial College with distinct but complementary expertise to attack a number of challenging critical issues in this field. Two classes of these solid electrolytes, oxide garnets and sulphide glass ceramics, have been found to have very high room-temperature ionic conductivities. A number of characteristics have been identified that may provide either relative benefits or disadvantages: higher-modulus materials may cycle more stably in batteries; tougher materials may be more easily brought into industrial practice; polycrystalline character may limit apparent bulk-transport rates, lowering power efficiency; interfaces may be chemically unstable, affecting long-term state of health; etc. We propose to implement fundamental studies that shed light on the relative benefits and disadvantages of the oxide and sulphide ion-conductor paradigms, using the Li6.55Ga0.15*0.3La3Zr2O12 (* = vacancy) (LLZO) garnet and the P2S5-Li2S (PSLS) glass ceramic as model materials.The project centres around three experimental work packages that focus on 1) quantifying bulk properties and making them reproducible; specifically, issues of moisture and carbon-dioxide sensitivity of the electrolytes will be addressed to produce films with reduced resistances at the interfaces between particles. LLZO and PSLS films will be contrasted, and transport through them will be investigated via a number of in operando (in situ) metrologies, e.g., 6Li tracer and NMR studies in close concert with theoretical studies of ionic transport. 2) illustrating chemistry of the solid-electrolyte/Li two-dimensional interface and probing its morphological stability over time; we seek to identify the critical parameters needed to mitigate Li-metal dendrite formation and growth, and which allow smooth Li-plating on the electrolyte surface. 3) producing tailored, cohesive three-dimensional interfaces with complex morphologies that do not crack on extensive cycling. The development of materials with much larger electrode/electrolyte contact areas will increase Li+ exchange between phases within the electrode, increasing rate performance. A multiscale modelling effort cuts across the 3 work packages, aiming to produce fundamental physical insight, synthesize experimental outputs, and guide experimental design. The goals for the theory portion are unique in the sense that the models will aim for true 'multiscale' character, integrating atomistic and continuum perspectives. Overall, the project aims to provide new new strategies to improve the performance of SSLBs but will also result in new electrolyte designs that are suitable for to protect Li metal in other so-called "beyond Li-ion" batteries such as Li-air and Li-S and smaller batteries for internet communications technologies.
固态锂离子电池(sslb)消除了易燃的有机电解质,代表了电池安全性的极致。SSLB将在电池安全至关重要的行业中找到潜在的用途,例如汽车行业(汽车,电动自行车和公共汽车),以及在较小的应用中,消除液体电解质可以更好地与其他设备兼容,例如芯片上的电池或传感器。这些电池在体积能量密度方面可以与传统锂离子电池竞争,但它们的功率密度较低。最近,几种可行的无机固体锂离子导电电解质被确定为具有接近液体的电导率,这激发了本研究计划。现在迫切需要降低界面电阻(特别是电解质和电极之间的界面电阻)的策略,以及构建可多次循环且无机械故障的固有可扩展设备的策略。这个多机构项目汇集了来自剑桥大学、牛津大学和帝国理工学院的经验丰富、世界领先的研究人员,他们具有独特但互补的专业知识,以解决该领域的一些具有挑战性的关键问题。这两类固体电解质,氧化物石榴石和硫化物玻璃陶瓷,已被发现具有非常高的室温离子电导率。已经确定了一些可能提供相对优势或劣势的特性:高模量材料可以在电池中更稳定地循环;较硬的材料可能更容易用于工业实践;多晶特性可能限制表观体积传输速率,降低功率效率;界面的化学性质可能不稳定,影响长期的健康状态;等。我们建议以Li6.55Ga0.15*0.3La3Zr2O12 (* = vacancy) (LLZO)石榴石和P2S5-Li2S (PSLS)玻璃陶瓷为模型材料,开展基础研究,阐明氧化物和硫化物离子导体范式的相对优缺点。该项目围绕三个实验工作包展开,重点是:1)量化体积特性并使其可重复;具体地说,电解质的水分和二氧化碳敏感性问题将得到解决,以产生在颗粒之间界面处电阻降低的薄膜。将对LLZO和PSLS薄膜进行对比,并通过许多原位计量方法(例如,6Li示踪剂和核磁共振研究)来研究它们之间的传输,这些研究与离子传输的理论研究密切相关。2)阐明固体-电解质/锂二维界面的化学性质,并探测其随时间的形态稳定性;我们试图确定减缓锂金属枝晶形成和生长所需的关键参数,并使电解质表面镀上光滑的锂。3)产生具有复杂形态的定制的、内聚的三维界面,在广泛的循环中不会破裂。具有更大电极/电解质接触面积的材料的发展将增加电极内相之间的Li+交换,提高速率性能。多尺度建模工作跨越3个工作包,旨在产生基本的物理见解,综合实验输出,并指导实验设计。理论部分的目标是独特的,因为模型将以真正的“多尺度”特征为目标,整合原子和连续体的观点。总体而言,该项目旨在提供新的策略来提高sslb的性能,但也将产生新的电解质设计,适用于保护其他所谓的“超锂离子”电池中的锂金属,如Li-air和Li- s,以及用于互联网通信技术的小型电池。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural Evolution of Layered Manganese Oxysulfides during Reversible Electrochemical Lithium Insertion and Copper Extrusion.
- DOI:10.1021/acs.chemmater.1c00375
- 发表时间:2021-06-08
- 期刊:
- 影响因子:0
- 作者:Dey S;Zeng D;Adamson P;Cabana J;Indris S;Lu J;Clarke SJ;Grey CP
- 通讯作者:Grey CP
Garnet Electrolytes for Solid State Batteries: Visualization of Moisture-Induced Chemical Degradation and Revealing Its Impact on the Li-Ion Dynamics
- DOI:10.1021/acs.chemmater.8b00486
- 发表时间:2018-06-12
- 期刊:
- 影响因子:8.6
- 作者:Brugge, Rowena H.;Hekselman, A. K. Ola;Aguadero, Ainara
- 通讯作者:Aguadero, Ainara
Finite element methods for multicomponent convection-diffusion
多分量对流扩散的有限元方法
- DOI:10.48550/arxiv.2208.11949
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Aznaran F
- 通讯作者:Aznaran F
Solid-state NMR investigation of structure and dynamics of solid electrolytes and coatings for Li-ion battery applications
用于锂离子电池应用的固体电解质和涂层的结构和动力学的固态核磁共振研究
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Emge Steffen
- 通讯作者:Emge Steffen
The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance
- DOI:10.1039/d0ta04974c
- 发表时间:2020-07-28
- 期刊:
- 影响因子:11.9
- 作者:Brugge, Rowena H.;Pesci, Federico M.;Aguadero, Ainara
- 通讯作者:Aguadero, Ainara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clare Grey其他文献
Can a high-fidelity simulation tutorial improve written examination results? Review of a change in teaching practice.
高保真模拟教程能否提高笔试成绩?
- DOI:
10.12968/bjon.2022.31.13.704 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Clare Grey - 通讯作者:
Clare Grey
Clare Grey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clare Grey', 18)}}的其他基金
Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
- 批准号:
EP/Y024958/1 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
Fellowship
The UK Dynamic Nuclear Polarisation Magic Angle Spinning NMR Facility
英国动态核极化魔角旋转核磁共振设备
- 批准号:
EP/W021498/1 - 财政年份:2022
- 资助金额:
$ 221.09万 - 项目类别:
Research Grant
Centre for Advanced Materials for Integrated Energy Systems (CAM-IES)
集成能源系统先进材料中心 (CAM-IES)
- 批准号:
EP/P007767/1 - 财政年份:2016
- 资助金额:
$ 221.09万 - 项目类别:
Research Grant
AMorphous Silicon Alloy Anodes for Multiple Battery Systems - "AMorpheuS"
用于多种电池系统的非晶硅合金阳极 - “AMorpheuS”
- 批准号:
EP/N001583/1 - 财政年份:2015
- 资助金额:
$ 221.09万 - 项目类别:
Research Grant
Solid State NMR Studies of Disordered Solids-Ionic Conductors and Battery Materials
无序固体离子导体和电池材料的固态核磁共振研究
- 批准号:
0804737 - 财政年份:2008
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
CRC: Collaborative Research: Structure-Sorption Relationships In Disordered Iron-oxyhydroxides
CRC:合作研究:无序羟基氧化铁的结构-吸附关系
- 批准号:
0714183 - 财政年份:2007
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
- 批准号:
0506120 - 财政年份:2005
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
ACT/SGER: Improving the Lifetimes of Batteries: NMR Studies of Structure and SEI Formation
ACT/SGER:提高电池寿命:结构和 SEI 形成的 NMR 研究
- 批准号:
0442181 - 财政年份:2004
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
Purchase and Upgrade of Solid State NMR Instrumentation for Materials Chemistry and Geosciences
用于材料化学和地球科学的固态核磁共振仪器的购买和升级
- 批准号:
0321001 - 财政年份:2003
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
- 批准号:
0211353 - 财政年份:2002
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
- 批准号:
2327327 - 财政年份:2024
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
Optimized Up-scaled Technology for Next Generation Solid Oxide Electrolysis
下一代固体氧化物电解的优化放大技术
- 批准号:
10063108 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
EU-Funded
Next generation T cell therapies for mutant KRAS solid tumors
针对突变 KRAS 实体瘤的下一代 T 细胞疗法
- 批准号:
10731929 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
Engineering next generation supercharged CAR T-cells against solid tumors
设计下一代增强 CAR T 细胞来对抗实体瘤
- 批准号:
10698970 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
SBIR Phase II: A New Class of High-Conductivity Solid-state Composite Electrolytes for Next-Generation Lithium Batteries
SBIR II 期:用于下一代锂电池的新型高电导率固态复合电解质
- 批准号:
2111963 - 财政年份:2022
- 资助金额:
$ 221.09万 - 项目类别:
Cooperative Agreement
Development of High-Performance and Safe Next-Generation All-Solid-State Na Batteries
高性能、安全的下一代全固态钠电池的开发
- 批准号:
RGPIN-2021-03392 - 财政年份:2022
- 资助金额:
$ 221.09万 - 项目类别:
Discovery Grants Program - Individual
Hybrid electrolyte membranes for the next-generation printable all-solid lithium batteries
用于下一代可印刷全固体锂电池的混合电解质膜
- 批准号:
568645-2021 - 财政年份:2022
- 资助金额:
$ 221.09万 - 项目类别:
Alliance Grants
Investigating the Nanoscale Solid-Liquid Interface for Next Generation Batteries via Cryogenic Sub-Atomic Scale Electron Microscopy
通过低温亚原子级电子显微镜研究下一代电池的纳米级固液界面
- 批准号:
2825209 - 财政年份:2022
- 资助金额:
$ 221.09万 - 项目类别:
Studentship
Development of next-generation CAR-NK cell immunotherapy against solid tumors
开发下一代针对实体瘤的CAR-NK细胞免疫疗法
- 批准号:
22K07137 - 财政年份:2022
- 资助金额:
$ 221.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
All-solid-state silicon anodes for next-generation Li-ion batteries
用于下一代锂离子电池的全固态硅阳极
- 批准号:
561228-2020 - 财政年份:2022
- 资助金额:
$ 221.09万 - 项目类别:
Alliance Grants