AMorphous Silicon Alloy Anodes for Multiple Battery Systems - "AMorpheuS"
用于多种电池系统的非晶硅合金阳极 - “AMorpheuS”
基本信息
- 批准号:EP/N001583/1
- 负责人:
- 金额:$ 120.08万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Carbon anodes for Li-ion batteries (LIBs) are regarded as one limiting factor preventing Li-ion batteries from being a viable option for transport applications (which require higher capacity for extended driving ranges) or grid storage applications (which require long cycle life). Compared to carbon, silicon has a much higher energy density and has been the focus of considerable research effort in recent years, stimulating the formation of high-profile, high-investment university spin-out companies such as Amprius and Nexeon. Silicon is the second most abundant element in the earth's crust and is thus a sustainable battery material candidate from a cost and availability perspective. However, despite its desirable properties for Li-ion batteries, it is also renowned for its drawbacks, namely large volume expansion, pulverisation and continued lithium loss through chemical reactions with the electrolyte (which the lithium ions diffuse in). Such phenomena have hindered the successful widespread uptake of this material in commercial Li-ion batteries, despite the myriad of global research groups working on finding ways to make it viable, e.g. by nano-structuring. Project AMorpheuS presents an alternative way to fabricate Si anodes that does not rely on complex, costly nanostructuring or attempting to control electrode architectures. The approach is simply to deposit from solution using electrodeposition methods and to passivate the amorphous thin films with polymer chemistries that have already been shown to be effective as binders for Si electrodes. A fundamental understanding of the structural and surface properties of these electrodes will be obtained during realistic battery operation so as to identify the optimum Si alloy and polymer chemistry and optimise performance rationally. This project will develop Si electrodes that are not exclusively destined for use in Li-ion systems but can also be reversibly cycled in Na-ion and Li-S batteries. A variety of Si-alloy chemistries will be explored, including Si-Sn alloys, since these show considerable promise as anodes for Na-ion batteries. A goal is to develop the first Si-based Na anode. This flexibility opens up numerous technology transfer opportunities in a variety of emerging battery systems focused on higher energy, sustainable, and safer technologies (e.g. Li-ion, Na-ion and LiS, respectively). The new batteries will be tested in the UK's first full battery prototyping line in a non-commercial environment. Fully understanding what occurs in a battery as it is charged / discharged is complex. The battery is a closed system with constantly changing domains. Central to the success of this project is the application of in-situ characterisation techniques for analysing real-time, dynamic structural and surface changes that occur as Li ions pass back and forth between the anode and cathode (or why they do not). This knowledge will subsequently guide continued improvements in electrode designs. The major techniques proposed to gain a comprehensive understanding of the chemistry occurring in the battery as it is charged/discharged are multinuclear NMR and X-ray computed tomography. These techniques have provided battery researchers with a wealth of vital, real-time insight - especially regarding failure mechanisms in silicon materials. Project AMorpheuS's approach will reduce the need for additional processing of materials in the electrodes, e.g., (i) high surface area carbons (which need energy-intense mixing processes) and (ii) industry-standard binders (which require toxic solvents to enable them to be processed into coatings). This strategy will reduce production time and eliminate toxic chemicals. These improvements will significantly reduce manufacturing cost and increase the UK's energy security.
锂离子电池(LIB)的碳阳极被认为是一个限制因素,阻止锂离子电池成为运输应用(需要更高的容量以延长行驶里程)或电网存储应用(需要长循环寿命)的可行选择。与碳相比,硅具有更高的能量密度,近年来一直是大量研究工作的重点,刺激了Amprius和Nexeon等知名度高、投资大的大学衍生公司的形成。硅是地壳中第二丰富的元素,因此从成本和可用性的角度来看,它是一种可持续的电池材料候选者。然而,尽管它具有锂离子电池的理想特性,但它也因其缺点而闻名,即大体积膨胀,粉碎和通过与电解质(锂离子扩散)的化学反应而持续的锂损失。这种现象阻碍了这种材料在商业锂离子电池中的成功广泛应用,尽管无数的全球研究小组正在努力寻找使其可行的方法,例如通过纳米结构。AMorpheus项目提出了一种制造硅阳极的替代方法,该方法不依赖于复杂、昂贵的纳米结构或试图控制电极结构。该方法是简单地使用电沉积方法从溶液中存款,并用已经显示出作为Si电极的粘合剂有效的聚合物化学物质钝化非晶薄膜。这些电极的结构和表面特性的基本理解将在实际的电池操作过程中获得,以确定最佳的硅合金和聚合物化学和合理优化性能。该项目将开发不仅用于锂离子系统,而且还可以在钠离子和锂硫电池中可逆循环的硅电极。将探索各种硅合金化学,包括硅锡合金,因为这些显示出相当大的希望作为钠离子电池的阳极。目标是开发第一个Si基Na阳极。 这种灵活性为专注于更高能量、可持续和更安全技术的各种新兴电池系统(例如,分别为锂离子、钠离子和LiS)提供了众多技术转让机会。新电池将在英国第一条非商业环境下的全电池原型生产线上进行测试。完全理解电池在充电/放电时发生的情况是复杂的。电池是一个封闭的系统,具有不断变化的域。该项目成功的关键是应用原位表征技术来分析锂离子在阳极和阴极之间来回通过时发生的实时动态结构和表面变化(或为什么不这样做)。这些知识将指导电极设计的持续改进。提出的主要技术,以获得一个全面的了解发生在电池中的化学,因为它是充电/放电是多核NMR和X射线计算机断层扫描。这些技术为电池研究人员提供了大量重要的实时洞察力-特别是关于硅材料的失效机制。AMorpheuS项目的方法将减少对电极材料进行额外处理的需求,例如,(i)高表面积碳(其需要能量密集的混合过程)和(ii)工业标准粘合剂(其需要有毒溶剂以使其能够被加工成涂料)。这一战略将减少生产时间并消除有毒化学品。这些改进将大大降低制造成本,提高英国的能源安全。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Journal of Power Sources
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:John Collins;G. Kear;Xiaohong Li;C. Low;Derek Pletcher;R. Tangirala;Duncan Stratton-Campbell
- 通讯作者:John Collins;G. Kear;Xiaohong Li;C. Low;Derek Pletcher;R. Tangirala;Duncan Stratton-Campbell
Engineering new defective phases of UiO family metal-organic frameworks with water
- DOI:10.1039/c8ta10682g
- 发表时间:2019-04-07
- 期刊:
- 影响因子:11.9
- 作者:Firth, Francesca C. N.;Cliffe, Matthew J.;Grey, Clare P.
- 通讯作者:Grey, Clare P.
Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework
通过铪金属有机框架的缺陷介导转化形成金属有机纳米片
- DOI:10.17863/cam.11241
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Cliffe M
- 通讯作者:Cliffe M
Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework.
- DOI:10.1021/jacs.7b00106
- 发表时间:2017-04-19
- 期刊:
- 影响因子:15
- 作者:Cliffe MJ;Castillo-Martínez E;Wu Y;Lee J;Forse AC;Firth FCN;Moghadam PZ;Fairen-Jimenez D;Gaultois MW;Hill JA;Magdysyuk OV;Slater B;Goodwin AL;Grey CP
- 通讯作者:Grey CP
Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies
- DOI:10.1016/j.jpowsour.2015.10.066
- 发表时间:2016-01-20
- 期刊:
- 影响因子:9.2
- 作者:Beattie, Shane D.;Loveridge, M. J.;Dashwood, Richard
- 通讯作者:Dashwood, Richard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clare Grey其他文献
Can a high-fidelity simulation tutorial improve written examination results? Review of a change in teaching practice.
高保真模拟教程能否提高笔试成绩?
- DOI:
10.12968/bjon.2022.31.13.704 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Clare Grey - 通讯作者:
Clare Grey
Clare Grey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clare Grey', 18)}}的其他基金
Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
- 批准号:
EP/Y024958/1 - 财政年份:2023
- 资助金额:
$ 120.08万 - 项目类别:
Fellowship
The UK Dynamic Nuclear Polarisation Magic Angle Spinning NMR Facility
英国动态核极化魔角旋转核磁共振设备
- 批准号:
EP/W021498/1 - 财政年份:2022
- 资助金额:
$ 120.08万 - 项目类别:
Research Grant
Centre for Advanced Materials for Integrated Energy Systems (CAM-IES)
集成能源系统先进材料中心 (CAM-IES)
- 批准号:
EP/P007767/1 - 财政年份:2016
- 资助金额:
$ 120.08万 - 项目类别:
Research Grant
Next Generation Solid-State Batteries
下一代固态电池
- 批准号:
EP/P003532/1 - 财政年份:2016
- 资助金额:
$ 120.08万 - 项目类别:
Research Grant
Solid State NMR Studies of Disordered Solids-Ionic Conductors and Battery Materials
无序固体离子导体和电池材料的固态核磁共振研究
- 批准号:
0804737 - 财政年份:2008
- 资助金额:
$ 120.08万 - 项目类别:
Continuing Grant
CRC: Collaborative Research: Structure-Sorption Relationships In Disordered Iron-oxyhydroxides
CRC:合作研究:无序羟基氧化铁的结构-吸附关系
- 批准号:
0714183 - 财政年份:2007
- 资助金额:
$ 120.08万 - 项目类别:
Continuing Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
- 批准号:
0506120 - 财政年份:2005
- 资助金额:
$ 120.08万 - 项目类别:
Continuing Grant
ACT/SGER: Improving the Lifetimes of Batteries: NMR Studies of Structure and SEI Formation
ACT/SGER:提高电池寿命:结构和 SEI 形成的 NMR 研究
- 批准号:
0442181 - 财政年份:2004
- 资助金额:
$ 120.08万 - 项目类别:
Standard Grant
Purchase and Upgrade of Solid State NMR Instrumentation for Materials Chemistry and Geosciences
用于材料化学和地球科学的固态核磁共振仪器的购买和升级
- 批准号:
0321001 - 财政年份:2003
- 资助金额:
$ 120.08万 - 项目类别:
Standard Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
- 批准号:
0211353 - 财政年份:2002
- 资助金额:
$ 120.08万 - 项目类别:
Continuing Grant
相似国自然基金
Silicon-Tethered 分子内 Corey-Chaykovsky 反应和 Tandem Heterocyclopropylolefin 环化反应研究
- 批准号:20802044
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Highly productive production method for solar grade silicon using direct electrochemical reduction of silica and liquid alloy cathodes
利用二氧化硅和液态合金阴极直接电化学还原的太阳能级硅的高产生产方法
- 批准号:
16H02410 - 财政年份:2016
- 资助金额:
$ 120.08万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
The effects of silicon level and of post-extrusion quench rate on the formability of 6082 alloy extrusion
硅含量和挤压后淬火速率对6082合金挤压成形性能的影响
- 批准号:
468275-2014 - 财政年份:2014
- 资助金额:
$ 120.08万 - 项目类别:
Engage Grants Program
Development of cost-effective silver alloy front-side paste for silicon solar cells (HiLoSilver)
开发用于硅太阳能电池的经济高效的银合金正面浆料(HiLoSilver)
- 批准号:
101782 - 财政年份:2014
- 资助金额:
$ 120.08万 - 项目类别:
Collaborative R&D
Texture processing by wet blast technique and friction behavior of high silicon aluminum alloy
高硅铝合金湿式喷砂织构加工及摩擦行为
- 批准号:
25820034 - 财政年份:2013
- 资助金额:
$ 120.08万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of Nanocoatings for Primary Heat Exchanger within Condensing Boiler to Allow Replacement of Aluminium Silicon Alloy with Aluminium to Reduce Carbon Emissions, Cost, and Fuel Usage
开发用于冷凝锅炉内主热交换器的纳米涂层,以铝替代铝硅合金,以减少碳排放、成本和燃料使用
- 批准号:
131091 - 财政年份:2013
- 资助金额:
$ 120.08万 - 项目类别:
Feasibility Studies
SBIR Phase I: Novel Casting Process for Developing a Carbon Modified Hyper-Eutectic Aluminum-Silicon Alloy for Forging Wear Resistant Parts
SBIR 第一阶段:开发用于锻造耐磨零件的碳改性过共晶铝硅合金的新型铸造工艺
- 批准号:
1113469 - 财政年份:2011
- 资助金额:
$ 120.08万 - 项目类别:
Standard Grant
Synthesis of Silicon-Alloy Composite Thick-Film Anodes Using Gas-Deposition for Lithium Secondary Batteries
气相沉积法合成锂二次电池硅合金复合厚膜负极
- 批准号:
21550172 - 财政年份:2009
- 资助金额:
$ 120.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Silicon Germanium Carbon Alloy Crystal Growth
硅锗碳合金晶体生长
- 批准号:
9222781 - 财政年份:1992
- 资助金额:
$ 120.08万 - 项目类别:
Standard Grant
Magnetic Anisotrpy of High Silicon Iron Alloy Single Crystals for Rapid quenching Thechnicsl
高硅铁合金单晶磁各向异性快速淬火技术
- 批准号:
61460068 - 财政年份:1986
- 资助金额:
$ 120.08万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Investigation of the operational behaviour of binderless cemented carbide for high-precision milling of an aluminium alloy containing silicon and magnesium
无粘结剂硬质合金高精度铣削含硅镁铝合金的操作行为研究
- 批准号:
506652301 - 财政年份:
- 资助金额:
$ 120.08万 - 项目类别:
Research Grants