Coupling and Control in Continuous Time
连续时间耦合与控制
基本信息
- 批准号:EP/P003818/1
- 负责人:
- 金额:$ 42.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Randomness is ubiquitous in the natural world, and advances in understanding and modelling random events are key to making progress with many problems in the natural and social sciences, engineering, statistics, to name but a few. Coupling is a fundamental paradigm in probability through which probability distributions of random quantities (random variables, random processes) can be compared with each other via "pointwise" comparisons. It yields powerful techniques for analysing random systems. A Markov process is a random process whereby, conditional on the present, its future and past are independent. That is, if we know the present state of the process, we can gain no additional information on its future evolution by knowing more about its past. This paradigm describes many random processes used as models in the natural and social sciences. In coupling we are looking at two Markov processes that start from different locations and evolve jointly. We are interested in them meeting a number of criteria, e.g. the two processes meeting as soon as possible, staying close to each other for as long as possible, or other criteria (e.g. the large deviation behaviour of the coupling time, i.e. what the exponential rate of decay of the coupling time is). As well as being an interesting mathematical question in and of itself, this problem has significant potential applications. For example, the rate of convergence to stochastic equilibrium (a crucial question in many applications) is controlled by the rate at which coupling occurs.There is a natural lower bound in the speed of coupling. The "fastest" couplings, i.e. the couplings where the probability that the two processes have not met by any given time is smallest, are known as "maximal" couplings: one can construct those by defining the second process as a functional of the entire trajectory of the first. However, in the context of modelling in the sciences, it is natural to focus on co-adapted couplings, namely couplings whereby the second process at a given time can only be constructed based on the trajectory of the first upto and including the present time (i.e. no information about the future trajectory of the first process can be taken into account). The difficulty here is that it is hard to obtain optimal (called "extremal") couplings. In fact it's difficult to know how good any given co-adapted coupling is. This proposal is about taking any co-adapted coupling and providing a method of improving it. Not just locally, but proving mathematically that the sequential improvements we propose yield a co-adapted coupling that is as good as it can get. Essentially we are looking to solve a stochastic optimisation problem under the additional constraint of co-adaptivity. In this proposal, the main method for improving a co-adapted coupling to achieve optimality is via the application of control theory. We aim to use the Policy Improvement Algorithm, a tool from control theory that works in discrete time, and develop its application in continuous time. In the application part of the project, we aim to develop applications of the PIA in the theory of non-linear PDEs and Multi-Level Monte Carlo (MLMC) algorithms for processes with jumps. The areas of non-linear PDEs and MLMC simulation have applications with vast societal and economic impact: the former has applications in biology, physics, engineering to name a few, and the latter is of crucial importance in Uncertainty Quantification in engineering and science. When the uncertainty is high-dimensional and strongly nonlinear, Monte Carlo simulation remains the preferred approach, with applications in areas as diverse as biochemical reactions and plasma physics.
随机性在自然界中无处不在,在理解和模拟随机事件方面的进展是在自然科学和社会科学、工程、统计学等领域取得进展的关键。耦合是概率论中的一个基本范式,通过这种范式,可以通过逐点比较来比较随机变量(随机变量、随机过程)的概率分布。它为分析随机系统提供了强大的技术。马尔可夫过程是一个随机过程,在现在的条件下,它的未来和过去是独立的。也就是说,如果我们知道这个过程的当前状态,我们就不能通过更多地了解它的过去来获得关于它未来演变的额外信息。这种范式描述了自然科学和社会科学中用作模型的许多随机过程。在耦合中,我们看到两个马尔可夫过程,它们从不同的位置开始,共同进化。我们感兴趣的是它们满足一些标准,例如,两个过程尽快相遇,尽可能长时间保持接近,或者其他标准(例如,耦合时间的大偏差行为,即耦合时间的指数衰减率是多少)。这个问题本身就是一个有趣的数学问题,具有重要的潜在应用价值。例如,收敛到随机平衡的速度(在许多应用中是一个关键问题)由耦合发生的速率控制。耦合速度有一个自然的下限。“最快”耦合,即两个过程在任何给定时间都没有相遇的概率最小的耦合,称为“最大”耦合:人们可以通过将第二个过程定义为第一个过程的整个轨迹的泛函来构造这些耦合。然而,在科学建模的背景下,很自然地把重点放在共同适应的耦合上,即耦合,即在给定时间的第二个过程只能根据第一个过程的轨迹构建,直到并包括当前时间(即不能考虑关于第一个过程的未来轨迹的信息)。这里的困难在于很难获得最优(称为“极值”)的耦合。事实上,很难知道任何给定的共同适应耦合有多好。这项建议是关于采取任何共同适应的耦合并提供一种改进的方法。不仅是局部的,而且从数学上证明了我们提出的顺序改进产生了一个共同适应的耦合,这是最好的。从本质上讲,我们正在寻求解决一个在协同适应性的附加约束下的随机优化问题。在该方案中,改进共适应耦合以实现最优的主要方法是通过应用控制理论。我们的目标是使用策略改进算法,这是一个工作在离散时间的控制理论工具,并开发它在连续时间的应用。在项目的应用部分,我们的目标是开发PIA在非线性偏微分方程组理论和带跳过程的多水平蒙特卡罗(MLMC)算法中的应用。非线性偏微分方程组和MLMC模拟的应用具有广泛的社会和经济影响:前者在生物学、物理学、工程学等领域有应用,后者在工程和科学中的不确定性量化中具有至关重要的作用。当不确定性是高维和强非线性时,蒙特卡罗模拟仍然是首选方法,在生化反应和等离子体物理等领域都有应用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative contraction rates for Markov chains on general state spaces
- DOI:10.1214/19-ejp287
- 发表时间:2018-08
- 期刊:
- 影响因子:1.4
- 作者:A. Eberle;Mateusz B. Majka
- 通讯作者:A. Eberle;Mateusz B. Majka
$\varepsilon$-strong simulation of the convex minorants of stable processes and meanders
$varepsilon$-稳定过程和曲流的凸次要的强模拟
- DOI:10.48550/arxiv.1910.13273
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Cázares J
- 通讯作者:Cázares J
Pricing and Hedging the No-Negative-Equity Guarantee in Equity-Release Mortgages
股权释放抵押贷款中无负股权担保的定价和对冲
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Engelbrecht, K
- 通讯作者:Engelbrecht, K
Joint density of a stable process and its supremum: regularity and upper bounds
稳定过程的联合密度及其上界:正则性和上限
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:1.5
- 作者:Jorge González Cázares
- 通讯作者:Jorge González Cázares
A Gaussian approximation theorem for Lévy processes
Lévy 过程的高斯近似定理
- DOI:10.1016/j.spl.2021.109187
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Bang D
- 通讯作者:Bang D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksandar Mijatovic其他文献
Aleksandar Mijatovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksandar Mijatovic', 18)}}的其他基金
Anomalous diffusion via self-interaction and reflection
通过自相互作用和反射的异常扩散
- 批准号:
EP/W006227/1 - 财政年份:2022
- 资助金额:
$ 42.02万 - 项目类别:
Research Grant
DMS-EPSRC: Fast martingales, large deviations and randomised gradients for heavy-tailed target distributions
DMS-EPSRC:重尾目标分布的快速鞅、大偏差和随机梯度
- 批准号:
EP/V009478/1 - 财政年份:2021
- 资助金额:
$ 42.02万 - 项目类别:
Research Grant
Coupling and Control in Continuous Time
连续时间耦合与控制
- 批准号:
EP/P003818/2 - 财政年份:2018
- 资助金额:
$ 42.02万 - 项目类别:
Research Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 42.02万 - 项目类别:
Standard Grant
Development of continuous process on ethanol fermentation by dimorphic Mucor sp. with control of morphological changing factor
二态毛霉连续乙醇发酵工艺的开发。
- 批准号:
23K13866 - 财政年份:2023
- 资助金额:
$ 42.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Robust Quantum Error Correction by Continuous-Time Quantum Feedback Control
通过连续时间量子反馈控制开发鲁棒量子纠错
- 批准号:
23H01432 - 财政年份:2023
- 资助金额:
$ 42.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data-driven iterative learning control for continuous-time systems
连续时间系统的数据驱动迭代学习控制
- 批准号:
2891700 - 财政年份:2023
- 资助金额:
$ 42.02万 - 项目类别:
Studentship
Research on a Continuous Experimental Curriculum to Train Control Engineers Using Railway Toys
利用铁路玩具培养控制工程师的连续实验课程研究
- 批准号:
23K02674 - 财政年份:2023
- 资助金额:
$ 42.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Continuous Flow Ohmic Heating for Solid-Liquid Foods: Balancing Quality, Safety, Sustainability, and Intelligent Process Control
适用于固液食品的先进连续流欧姆加热:平衡质量、安全性、可持续性和智能过程控制
- 批准号:
10074002 - 财政年份:2023
- 资助金额:
$ 42.02万 - 项目类别:
Collaborative R&D
Optimization of the 5-choice continuous performance test to reveal a parietal-anterior cingulate-claustrum circuit underlying cognitive control and attention
优化 5 项选择的连续表现测试,揭示认知控制和注意力背后的顶叶-前扣带回-屏状核回路
- 批准号:
10722710 - 财政年份:2023
- 资助金额:
$ 42.02万 - 项目类别:
Continuous caster mould digital twin development for fluid flow control and sliver defect minimization
用于流体流量控制和条子缺陷最小化的连铸机模具数字孪生开发
- 批准号:
560338-2020 - 财政年份:2022
- 资助金额:
$ 42.02万 - 项目类别:
Alliance Grants
Design, build and process analytics control (PAT) of GMP equipment and process for continuous manufacture of long acting, controlled release drugs.
设计、建造和过程分析控制 (PAT) 的 GMP 设备和工艺,用于连续生产长效控释药物。
- 批准号:
10040478 - 财政年份:2022
- 资助金额:
$ 42.02万 - 项目类别:
Collaborative R&D
Developing a continuous quality control method for the sawmilling process using sensory features and advanced data mining approaches
使用感官特征和先进的数据挖掘方法开发锯木加工过程的连续质量控制方法
- 批准号:
RGPIN-2022-03581 - 财政年份:2022
- 资助金额:
$ 42.02万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




