DMS-EPSRC: Fast martingales, large deviations and randomised gradients for heavy-tailed target distributions

DMS-EPSRC:重尾目标分布的快速鞅、大偏差和随机梯度

基本信息

  • 批准号:
    EP/V009478/1
  • 负责人:
  • 金额:
    $ 84.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Markov chain is a mathematical object representing a random evolution with the following property: if we know the present state of the chain, its past and future are independent (i.e. information about the past does not alter the distribution of its future states). Markov chain models are fundamental across sciences and engineering. At the centre of this project are Markov chains on multi-dimensional state spaces that arise in randomised algorithms used in statistics and machine learning. This proposal is focused on the theoretical analysis of chains arising in applications in the case when their limiting distribution has heavy tails. The analysis of the heavy-tailed phenomena is crucial for the future success of randomised algorithms for two reasons: (a) they arise naturally in many applied problems and (b) are least well understood as they violate standard assumptions made in the existing theory (e.g. asymptotic linearity of the potential of the limit distribution at infinity).(a) Heavy-tailed limiting distributions arise naturally in many applications. For example, if the errors in a regression model are distributed according to a Cauchy distribution, the posterior density has polynomial tails. Perhaps a more startling fact is that heavy tails can arise in the posterior even though a heavy-tailed distribution does not appear in the definition of a model. If the errors in a data set are heteroscedastic, meaning that the variance of the error term varies with each observation, it is necessary to use the so-called robust regression (based on e.g. Lasso-type penalisation) in order to reduce the effect of the outliers. Again the posterior has heavy tails. (b) The presence of a spectral gap is known to be equivalent to geometric convergence of a Markov chain. However, as pointed out recently in the queueing literature, under geometric convergence ergodic estimators may still exhibit large deviation behaviour of the heavy-tailed type. Conversely, Markov chains with heavy tailed stationary measures typically do not have a spectral gap but might nevertheless exhibit good convergence properties. The EPSRC-NSF Lead Agency agreement presents a unique opportunity to combine the US expertise in theoretical Operations Research with the UK's capability in Computational Statistics, resulting in novel methodology for the analysis of the convergence of Markov chains with heavy-tailed targets, the main focus for this project.Our main goal is to fill the gap in the literature, best illustrated by the following baseline algorithm from applications: a random-scan Metropolis-within-Gibbs chain picks randomly a coordinate of a target distribution and moves it by a one-dimensional Metropolis step based on the conditional of the target. It is possible to prove that if ANY one-dimensional marginal of the target has heavy tails, the random-scan chain is NOT geometrically ergodic. The main goal of this proposal is to lay the theoretical foundations for the analysis of the stability of Markov chains with heavy-tailed targets, focusing on the processes that underpin many randomised algorithms used in practice. In time, this work is expected to have impact far beyond applied probability in a number of sub-areas of computational statistics and machine learning where heavy-tailed targets arise.
马尔可夫链是一个表示随机演化的数学对象,具有如下性质:如果我们知道链的当前状态,则其过去和未来是独立的(即,关于过去的信息不会改变其未来状态的分布)。马尔科夫链模型是科学和工程的基础。这个项目的核心是多维状态空间上的马尔可夫链,这些链出现在统计学和机器学习中使用的随机算法中。这一建议侧重于对应用中出现的链在其极限分布具有重尾的情况下的理论分析。对重尾现象的分析对随机算法未来的成功至关重要,原因有两个:(A)它们自然地出现在许多应用问题中,以及(B)由于它们违反了现有理论中所做的标准假设(例如,极限分布在无穷远的势的渐近线性)而被最不被理解。(A)重尾极限分布在许多应用中自然地出现。例如,如果回归模型中的误差按柯西分布分布,则后验密度具有多项式尾部。也许更令人震惊的事实是,即使在模型的定义中没有出现重尾分布,也可能在后面出现重尾。如果数据集中的误差是异方差的,这意味着误差项的方差随每个观测值而变化,则有必要使用所谓的稳健回归(基于例如套索类型的惩罚),以减少异常值的影响。同样,后部有厚重的尾巴。(B)谱间隙的存在等价于马尔可夫链的几何收敛。然而,正如最近在排队文献中指出的那样,在几何收敛下,遍历估计仍然可能表现出重尾型的大偏差行为。相反,具有重尾平稳测度的马尔可夫链通常没有谱间隙,但仍然可能表现出良好的收敛特性。EPSRC-NSF牵头机构协议提供了一个独特的机会,将美国在理论运筹学研究方面的专业知识与英国在计算统计方面的能力相结合,从而产生了分析具有重尾目标的马尔可夫链的收敛的新方法,这是本项目的主要焦点。我们的主要目标是填补文献中的空白,应用程序中的以下基线算法最好地说明了这一点:随机扫描的Metropolis-in-Gibbs链随机选取目标分布的坐标,并基于目标的条件以一维Metropolis步长移动它。可以证明,如果目标的任何一维边缘有重尾,则随机扫描链在几何上不是遍历的。这一建议的主要目标是为分析具有重尾目标的马尔可夫链的稳定性奠定理论基础,重点关注实践中使用的许多随机算法所依据的过程。随着时间的推移,这项工作预计将在计算统计和机器学习中出现重尾目标的一些子领域产生远远超出应用概率的影响。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A weak MLMC scheme for Lévy-copula-driven SDEs with applications to the pricing of credit, equity and interest rate derivatives
Lévy-copula 驱动的 SDE 的弱 MLMC 方案,应用于信贷、股票和利率衍生品的定价
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aleksandar Mijatovic
  • 通讯作者:
    Aleksandar Mijatovic
Brownian motion with asymptotically normal reflection in unbounded domains: from transience to stability
无界域中渐近法向反射的布朗运动:从瞬态到稳定
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Brešar
  • 通讯作者:
    M. Brešar
Monte Carlo algorithm for the extrema of tempered stable processes
调节稳定过程极值的蒙特卡罗算法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Jorge Ignacio González Cázares
  • 通讯作者:
    Jorge Ignacio González Cázares
Hölder continuity of the convex minorant of a Lévy process
Lévy 过程凸短矩的霍尔德连续性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bang, D.
  • 通讯作者:
    Bang, D.
How smooth can the convex hull of a Lévy path be?
Lévy 路径的凸包有多光滑?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bang, David
  • 通讯作者:
    Bang, David
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandar Mijatovic其他文献

Aleksandar Mijatovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandar Mijatovic', 18)}}的其他基金

Anomalous diffusion via self-interaction and reflection
通过自相互作用和反射的异常扩散
  • 批准号:
    EP/W006227/1
  • 财政年份:
    2022
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
Coupling and Control in Continuous Time
连续时间耦合与控制
  • 批准号:
    EP/P003818/2
  • 财政年份:
    2018
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
Coupling and Control in Continuous Time
连续时间耦合与控制
  • 批准号:
    EP/P003818/1
  • 财政年份:
    2016
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant

相似海外基金

ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
  • 批准号:
    EP/Z531182/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
  • 批准号:
    EP/V027395/2
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
  • 批准号:
    EP/X040844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
  • 批准号:
    EP/Y024052/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.43万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了