Energy-Use Minimisation via High Performance Heat-Power-Cooling Conversion and Integration: A Holistic Molecules to Technologies to Systems Approach
通过高性能热-电-冷却转换和集成实现能源使用最小化:从分子到技术再到系统的整体方法
基本信息
- 批准号:EP/P004709/1
- 负责人:
- 金额:$ 200.5万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A 4-year multidisciplinary project aimed at minimising primary-energy use in UK industry is proposed, concerned with next-generation technological solutions, identifying the challenges, and assessing the opportunities and benefits (to different stakeholders) resulting from their optimal implementation. Around 20 companies from component manufacturers to industrial end-users have expressed an interest in supporting this project. With this industrial support, the team has the necessary access and is in a prime position to deliver real impact, culminating in the practical demonstration of these solutions.The proposed project is concerned with specific advancements to two selected energy-conversion technologies with integrated energy-storage capabilities, one for each of: 1) heat-to-power with organic Rankine cycle (ORC) devices; and 2) heat-to-cooling with absorption refrigeration (AR) devices. These technological solutions are capable of recovering and utilising thermal energy from a diverse range of sources in industrial applications. The heat input can come from highly efficient distributed combined heat & power (CHP) units, conventional or renewable sources (solar, geothermal, biomass/gas), or be wasted from industrial processes. With regards to the latter, at least 17% of all UK industrial energy-use is estimated as being wasted as heat, of which only 17% is considered economically recoverable with currently available technology. The successful implementation of these technologies would increase the potential for waste-heat utilisation by a factor of 3.5, from 17% with current technologies to close to 60%.The in-built, by design, capacity for low-cost thermal storage acts to buffer energy or temperature fluctuations inherent to most real heat sources, allowing smaller conversion devices (for the same average input) and more efficient operation of those devices closer to their design points for longer periods. This will greatly improve the economic proposition of implementing these conversion solutions by simultaneously reducing capital and maintenance costs, and improving performance.The technologies of interest are promising but are not economically viable currently in the vast majority of applications with >5-20 year paybacks at best. The project involves targeting and resolving pre-identified 'bottleneck' aspects of each technology that can enable step-improvements in maximising performance per unit capital cost. The goal is to enable the widespread uptake of these technologies and their optimal integration with existing energy systems and energy-efficiency strategies, leading to drastic increases performance while lowering costs, thus reducing payback to 3-5 years. It is intended that technological step-changes will be attained by unlocking the synergistic potential of optimised, application-tailored fluids for high efficiency and power, and of innovative components including advanced heat-exchanger configurations and architectures in order to increase thermal transport while simultaneously reducing component size and cost. Important system-level components are included in the project, whose objective is to assess the impact of incorporating these systems in targeted industrial settings, examine technoeconomic feasibility, and identify opportunities relating to optimal integration, control and operation to maximise in-use performance. A dynamic, interactive whole-energy-integration design and assessment platform will be developed to accelerate the implementation of the technological advances, feeding into specific case-studies and facilitating direct recommendations to industry.Only two international research teams are capable of developing the necessary tools that combine multiscale state-of-the-art molecular thermodynamic theories for fluids, detailed energy-conversion ORC and AR models, and incorporating these into whole-energy-system optimisation platforms. This is truly a world-leading development.
提出了一个为期4年的多学科项目,旨在最大限度地减少英国工业中的一次能源使用,关注下一代技术解决方案,确定挑战,并评估其最佳实施带来的机会和利益(对不同的利益相关者)。从零部件制造商到工业最终用户,约有20家公司表示有兴趣支持该项目。有了这种工业支持,该团队就有了必要的渠道,并处于一个主要的位置,以提供真实的影响,最终在这些解决方案的实际演示。拟议的项目涉及两种选定的具有集成储能能力的能量转换技术的具体进展,分别用于:1)有机朗肯循环(ORC)装置的热发电;和2)利用吸收式制冷(AR)装置的加热到冷却。这些技术解决方案能够在工业应用中从各种来源回收和利用热能。热量输入可以来自高效的分布式热电联产(CHP)装置,传统或可再生能源(太阳能,地热,生物质/天然气),或从工业过程中浪费。关于后者,据估计,英国所有工业能源使用中至少有17%被浪费为热量,其中只有17%被认为是经济上可回收的。这些技术的成功实施将使废热利用的潜力增加3.5倍,从目前技术的17%增加到接近60%。通过设计,低成本热存储的内置容量可以缓冲大多数真实的热源固有的能量或温度波动,允许更小的转换器件(对于相同的平均输入)和更长时间内更有效地操作更接近其设计点的那些器件。这将大大提高实施这些转换解决方案的经济性,同时降低资本和维护成本,并提高性能。感兴趣的技术是有前途的,但目前在绝大多数应用中经济上不可行,最多只有>5-20年的投资回收期。该项目涉及针对和解决每项技术的预先确定的“瓶颈”方面,这些技术可以实现逐步改进,以最大限度地提高单位资本成本的性能。目标是使这些技术得到广泛应用,并与现有能源系统和能源效率战略实现最佳整合,从而大幅提高性能,同时降低成本,从而将投资回收期缩短至3-5年。其目的是通过释放优化的、为应用量身定制的流体的协同潜力来实现技术进步,以实现高效率和功率,以及创新组件,包括先进的热交换器配置和架构,以增加热传输,同时减少组件尺寸和成本。该项目包括重要的系统级组件,其目标是评估将这些系统纳入目标工业环境的影响,检查技术经济可行性,并确定与最佳集成,控制和操作有关的机会,以最大限度地提高使用性能。将开发一个动态的、互动的全能量集成设计和评估平台,以加速技术进步的实施,为具体的案例研究提供投入,并促进向工业界的直接建议。只有两个国际研究团队能够开发必要的工具,结合联合收割机多尺度最先进的流体分子热力学理论、详细的能量转换ORC和AR模型、并将其纳入整体能源系统优化平台。这确实是世界领先的发展。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal system configuration and operation strategies of flexible hybrid nuclear-solar power plants
灵活核太阳能混合电站优化系统配置及运行策略
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Al Kindi AA
- 通讯作者:Al Kindi AA
Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector
- DOI:10.1016/j.energy.2020.118046
- 发表时间:2020-09-01
- 期刊:
- 影响因子:9
- 作者:Acha, Salvador;Le Brun, Niccolo;Shah, Nilay
- 通讯作者:Shah, Nilay
Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications.
- DOI:10.1016/j.jhazmat.2021.125407
- 发表时间:2021-07
- 期刊:
- 影响因子:13.6
- 作者:A. Anagnostopoulos;M. Navarro;M. Stefanidou;Yulong Ding;G. Gaidajis
- 通讯作者:A. Anagnostopoulos;M. Navarro;M. Stefanidou;Yulong Ding;G. Gaidajis
Flow boiling in copper and aluminium microchannels
铜和铝微通道中的流动沸腾
- DOI:10.1016/j.ijheatmasstransfer.2022.123101
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Al-Zaidi A
- 通讯作者:Al-Zaidi A
Microstructural improvement of solar salt based MgO composites through surface tension/wettability modification with SiO2 nanoparticles
- DOI:10.1016/j.solmat.2022.111577
- 发表时间:2022-05
- 期刊:
- 影响因子:6.9
- 作者:A. Anagnostopoulos;M. Navarro;Yulong Ding
- 通讯作者:A. Anagnostopoulos;M. Navarro;Yulong Ding
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Markides其他文献
有机郎肯循环中喷射器能量分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
张琨;杨勇;Christos Markides;沈胜强 - 通讯作者:
沈胜强
Low-loss THz Waveguides and Devices
低损耗太赫兹波导和器件
- DOI:
10.1364/photonics.2014.m3c.1 - 发表时间:
2014 - 期刊:
- 影响因子:2.4
- 作者:
B. Rahman;M. Uthman;A. Quadir;K. Grattan;Christos Markides;C. Themistos - 通讯作者:
C. Themistos
Christos Markides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Markides', 18)}}的其他基金
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
- 批准号:
EP/Y004973/1 - 财政年份:2023
- 资助金额:
$ 200.5万 - 项目类别:
Research Grant
PCM-in-PV - PV cells with modified optical and thermal properties for high-efficiency electrical applications
PCM-in-PV - 具有改进的光学和热性能的光伏电池,适用于高效电气应用
- 批准号:
EP/Y02821X/1 - 财政年份:2023
- 资助金额:
$ 200.5万 - 项目类别:
Fellowship
BOiliNg flows in SmAll and mIcrochannels (BONSAI): From Fundamentals to Design
小和微通道中的沸腾流 (BONSAI):从基础知识到设计
- 批准号:
EP/T03338X/1 - 财政年份:2020
- 资助金额:
$ 200.5万 - 项目类别:
Research Grant
Indiacool - UK-India Solar Cooling Innovation (Energy Catalyst Mid-stage Programme)
Indiacool - 英国-印度太阳能冷却创新(能源催化剂中期计划)
- 批准号:
EP/P030920/1 - 财政年份:2017
- 资助金额:
$ 200.5万 - 项目类别:
Research Grant
相似海外基金
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
- 批准号:
2594635 - 财政年份:2025
- 资助金额:
$ 200.5万 - 项目类别:
Studentship
Validating FilaChar Use in Wastewater Treatment
验证 FilaChar 在废水处理中的使用
- 批准号:
10106623 - 财政年份:2024
- 资助金额:
$ 200.5万 - 项目类别:
Launchpad
Museum Visitor Experience and the Responsible Use of AI to Communicate Colonial Collections
博物馆参观者体验和负责任地使用人工智能来交流殖民地收藏品
- 批准号:
AH/Z505547/1 - 财政年份:2024
- 资助金额:
$ 200.5万 - 项目类别:
Research Grant
Examining the Effect of Childhood Individual and Contextual Risk Factors on Violence Use and Experience at Early Adulthood (18-21 years)
检查童年个体和背景风险因素对成年早期(18-21 岁)暴力使用和经历的影响
- 批准号:
2901103 - 财政年份:2024
- 资助金额:
$ 200.5万 - 项目类别:
Studentship
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 200.5万 - 项目类别:
Research Grant
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
- 批准号:
MR/Y019717/1 - 财政年份:2024
- 资助金额:
$ 200.5万 - 项目类别:
Research Grant
The Use of Geothermal Energy for the Decarbonisation of Heat in Greater Manchester
利用地热能实现大曼彻斯特热量脱碳
- 批准号:
NE/Y004973/1 - 财政年份:2024
- 资助金额:
$ 200.5万 - 项目类别:
Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Resource Use as a Mediator of Sociodemographic Disparities in Student Success
博士后奖学金:STEMEdIPRF:资源利用作为学生成功中社会人口差异的中介
- 批准号:
2327314 - 财政年份:2024
- 资助金额:
$ 200.5万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 200.5万 - 项目类别:
Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 200.5万 - 项目类别:
Standard Grant














{{item.name}}会员




