Embedding measured data within a computational framework for vibro-acoustic design

将测量数据嵌入到振动声学设计的计算框架中

基本信息

  • 批准号:
    EP/P005489/1
  • 负责人:
  • 金额:
    $ 63.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The design of products to achieve acceptable levels of noise and vibration is a major concern across a range of industries. In many cases there is a large trade off between cost and performance, and this means that achieving an efficient design is crucial to commercial success. In principle design optimisation can be achieved through testing and improving physical prototypes, but the production of a prototype is time consuming and costly. For this reason there is a pressing need for virtual design methodologies, in which computational models are used to produce a near-final design before a physical prototype is built. Computational models used for noise and vibration analysis must be able to predict the performance of the system over a wide frequency range, potentially ranging from low frequency vibration problems at several hertz to high frequency noise problems at several kilohertz, and this presents severe difficulties. High frequency motions require a very detailed computer model, and this leads to long run times that are not ideal for iterative design. Furthermore, the high frequency performance of a system can be very sensitive to small manufacturing imperfections, and hence the predicted performance may not match the performance of the actual system. These difficulties can be largely overcome by employing recent advances in noise and vibration modelling in which a technique known as Statistical Energy Analysis (SEA) is combined with more conventional analysis methods such as the finite element method (FEM) or the boundary element method (BEM); this approach is known as the Hybrid Method. The Hybrid Method leads to a very large reduction in the run time of the model, while also providing an estimate of the variance in the performance caused by manufacturing imperfections. However, this approach does not fully solve the prediction problem, as a further major difficulty remains: some components in a system can be so complex that it is not possible to produce a detailed computational model of the component, and hence some degree of physical testing is unavoidable. Frequently experimental measurements are used to validate a computational model, or to update the parameters in a computational model, but the requirement here is quite different: the measured data must be used to complete the computational model by coupling a representation of the missing complex component to the other parts of the model. This issue forms the core of the current research proposal. The aim of the present work is to add "experimental" components to the Hybrid Method, and one way to do this is to model a component as a grey or black box: a grey box model consists of mathematical equations with experimentally determined parameters, while a black box model is based purely on measured input-output properties. These models must be capable of being coupled to either FEM, BEM, or SEA component models, and the project will address this issue. A major challenge is to determine the appropriate experimental tests and machine learning algorithms that are required to produce such models in the context of complex vibro-acoustic components. A second major challenge is to quantify the uncertainty in such models, and to include this uncertainty in the combined system model. The model must predict outputs that are useful to the designer, and such outputs include noise and vibration levels, together with uncertainty bounds on the predictions. In some cases "sound quality" rather than the overall noise level is of concern, and the project will develop techniques for the "auralisation" of the output of the combined model. A number of case studies will be developed with industrial partners to explore the application of the proposed approach.The present research programme will produce an efficient and reliable vibro-acoustic "design by science" prediction tool that meets the needs of a wide range of industrial sectors.
产品设计以达到可接受的噪音和振动水平是一系列行业的主要关注点。在许多情况下,成本和性能之间存在很大的权衡,这意味着实现高效的设计对商业成功至关重要。原则上,设计优化可以通过测试和改进物理原型来实现,但原型的生产既耗时又昂贵。由于这个原因,迫切需要虚拟设计方法,其中计算模型用于在构建物理原型之前生成接近最终的设计。用于噪声和振动分析的计算模型必须能够在较宽的频率范围内预测系统的性能,可能范围从几赫兹的低频振动问题到几千赫兹的高频噪声问题,这带来了严重的困难。高频运动需要非常详细的计算机模型,这导致长时间的运行,这不是迭代设计的理想选择。此外,系统的高频性能可能对微小的制造缺陷非常敏感,因此预测的性能可能与实际系统的性能不匹配。这些困难可以通过采用噪声和振动建模的最新进展来很大程度上克服,其中一种称为统计能量分析(SEA)的技术与更传统的分析方法(如有限元法(FEM)或边界元法(BEM))相结合;这种方法被称为混合方法。混合方法大大减少了模型的运行时间,同时还提供了由制造缺陷引起的性能差异的估计。然而,这种方法并不能完全解决预测问题,因为进一步的主要困难仍然存在:系统中的一些组件可能非常复杂,以至于不可能产生组件的详细计算模型,因此某种程度的物理测试是不可避免的。经常使用实验测量来验证计算模型,或更新计算模型中的参数,但这里的要求完全不同:必须使用测量数据通过将缺失的复杂组件的表示耦合到模型的其他部分来完成计算模型。这个问题构成了当前研究计划的核心。当前工作的目的是将“实验”组件添加到混合方法中,其中一种方法是将组件建模为灰盒或黑盒:灰盒模型由具有实验确定参数的数学方程组成,而黑盒模型纯粹基于测量的输入输出属性。这些模型必须能够耦合到FEM、BEM或SEA组件模型,项目将解决这个问题。一项主要挑战是确定在复杂振动声学组件环境下生成此类模型所需的适当实验测试和机器学习算法。第二个主要挑战是量化这些模型中的不确定性,并将这种不确定性包括在组合系统模型中。模型必须预测对设计者有用的输出,这些输出包括噪声和振动水平,以及预测的不确定性界限。在某些情况下,“声音质量”而不是整体噪音水平是值得关注的,该项目将开发技术,使组合模型的输出“听觉化”。将与工业伙伴一起进行若干案例研究,以探讨拟议方法的应用。目前的研究计划将产生一种有效和可靠的振动声学“科学设计”预测工具,以满足广泛的工业部门的需求。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DEVELOPMENT OF A HYBRID FE-SEA-EXPERIMENTAL MODEL: EXPERIMENTAL SUBSYSTEM CHARACTERISATION
混合FE-SEA-实验模型的开发:实验子系统特征
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.W.R. Meggitt
  • 通讯作者:
    J.W.R. Meggitt
DEVELOPMENT OF A HYBRID FE-SEA-EXPERIMENTAL MODEL: THEORETICAL FORMULATION
混合FE-SEA-实验模型的开发:理论公式
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Clot
  • 通讯作者:
    A. Clot
IDENTIFICATION OF COUPLED DEGREES OF FREEDOM AT THE INTERFACE BETWEEN SUB-STRUCTURES
子结构之间界面耦合自由度的识别
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.S. Elliott
  • 通讯作者:
    A.S. Elliott
On the use of experimental ensembles in a hybrid deterministicstatistical energy analysis method
关于实验系综在混合确定性统计能量分析方法中的使用
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Clot-Razquin
  • 通讯作者:
    A. Clot-Razquin
An experimental exploration of the properties of random frequency response functions
随机频率响应函数特性的实验探索
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Moorhouse其他文献

Functional suppression of K^+-Cl^-cotransporter2(KCC2) by lidocaine
利多卡因对 K^-Cl^-协同转运蛋白 2(KCC2) 的功能性抑制
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中畑義久;渡部美穂;Andrew Moorhouse;鍋倉淳一;石橋仁
  • 通讯作者:
    石橋仁
淡蒼球外節は基底核回路における間接路の単なる中継核か?
苍白球外段只是基底节环路间接通路的中继核吗?
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryohei Akiyoshi;Hiroaki Wake;Daisuke Kato;Hiroshi Horiuchi;Riho Ono;Ako Ikegami;Koichiro Haruwaka;Toshiaki Omori;Yoshihisa Tachibana;Andrew Moorhouse;Junichi Nabekura;橘 吉寿
  • 通讯作者:
    橘 吉寿
皮質線条体ニューロンと皮質視床下核ニューロンの機能的差異
皮质纹状体和皮质丘脑神经元之间的功能差异
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryohei Akiyoshi;Hiroaki Wake;Daisuke Kato;Hiroshi Horiuchi;Riho Ono;Ako Ikegami;Koichiro Haruwaka;Toshiaki Omori;Yoshihisa Tachibana;Andrew Moorhouse;Junichi Nabekura;橘 吉寿;橘 吉寿
  • 通讯作者:
    橘 吉寿
Microglia respond to activity-induced axonal swelling to rescue neurons from irreversible damage
小胶质细胞对活动引起的轴突肿胀做出反应,以挽救神经元免受不可逆损伤
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    加藤剛;石川達也;川本恭兵;Andrew Moorhouse;鍋倉淳一
  • 通讯作者:
    鍋倉淳一

Andrew Moorhouse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Moorhouse', 18)}}的其他基金

IMP&CTS - IN SITU MEASUREMENT METHOD FOR PREDICTION & CHARACTERISATION AND DIAGNOSTIC TESTING OF STRUCTURE-BORNE SOUND
内啡肽
  • 批准号:
    EP/G066582/1
  • 财政年份:
    2009
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Research Grant
STRUCTURE-BORNE SOUND SOURCE MODEL AS A PRE-PROCESSOR FOR STATISTICAL ENERGY ANALYSIS: SuBSS-SEA Pre-processor
结构声源模型作为统计能量分析的预处理器:SubBSS-SEA 预处理器
  • 批准号:
    EP/D002109/1
  • 财政年份:
    2006
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Research Grant

相似海外基金

RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 63.15万
  • 项目类别:
    Standard Grant
A Randomized Clinical Trial of Continuous vs. Intermittent Infusion Vancomycin: Effects on Measured GFR and Kidney Injury Biomarkers
连续与间歇输注万古霉素的随机临床试验:对测量的 GFR 和肾损伤生物标志物的影响
  • 批准号:
    10647236
  • 财政年份:
    2023
  • 资助金额:
    $ 63.15万
  • 项目类别:
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 63.15万
  • 项目类别:
Can diagnostic biomarkers for parkinsonian syndromes be measured in postmortem blood samples?
可以在死后血液样本中测量帕金森综合症的诊断生物标志物吗?
  • 批准号:
    10572535
  • 财政年份:
    2023
  • 资助金额:
    $ 63.15万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 63.15万
  • 项目类别:
Control Systems Engineering to Address the Problem of Weight Loss Maintenance: A System Identification Experiment to Model Behavioral & Psychosocial Factors Measured by Ecological Momentary Assessment
解决减肥维持问题的控制系统工程:行为建模的系统识别实验
  • 批准号:
    10749979
  • 财政年份:
    2023
  • 资助金额:
    $ 63.15万
  • 项目类别:
Objectively measured neighborhood greenness in midlife and late life cognitive and brain imaging outcomes for Alzheimer's disease: The Multi-Ethnic Study of Atherosclerosis
客观测量中年和晚年阿尔茨海默病认知和脑成像结果的邻里绿色度:动脉粥样硬化的多种族研究
  • 批准号:
    10353162
  • 财政年份:
    2022
  • 资助金额:
    $ 63.15万
  • 项目类别:
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
  • 批准号:
    10706594
  • 财政年份:
    2022
  • 资助金额:
    $ 63.15万
  • 项目类别:
Testing Validity of Virtual Data Collection Methods to Inform Best Practice: In Person versus Zoom measured Anthropometry (Admin Supp Yang_Lily)
测试虚拟数据收集方法的有效性以提供最佳实践:亲自与缩放测量的人体测量学(Admin Supp Yang_Lily)
  • 批准号:
    10831658
  • 财政年份:
    2022
  • 资助金额:
    $ 63.15万
  • 项目类别:
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
  • 批准号:
    10613222
  • 财政年份:
    2022
  • 资助金额:
    $ 63.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了