New approaches to Gibbs measures at the interface of probability and computational complexity
在概率和计算复杂性界面上进行吉布斯测量的新方法
基本信息
- 批准号:EP/P009913/1
- 负责人:
- 金额:$ 12.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The concept of a "Gibbs distribution" - developed during the rise of statistical mechanics in the 19th century by Clausius, Maxwell, Boltzmann, Hamilton, and Gibbs - defines a probability distribution over configurations of particles based on an energy function governed by local interactions. Not only have Gibbs distributions proved invaluable in describing the behaviour of physical systems, but the simple framework of Gibbs distributions has become ubiquitous in fields far from statistical physics under the name "probabilistic graphical models": these fields include Bayesian statistics, optimisation, machine learning, mathematical biology, artificial intelligence, and many others. Gibbs distributions are remarkably effective because they respect the underlying structure of a complex system: probabilistic dependencies are specified by a simple network structure, corresponding to the network indicating which components of the system interact. Although the specification of a Gibbs distribution is very simple, the resulting probability distribution on configurations can be staggeringly complex. Typically the number of possible configurations grows as an exponential function of the system size, and so it is computationally hopeless to enumerate and calculate exact statistics of the system. Nevertheless, it is sometimes possible to understand all of the relevant global information about the system - the macroscopic `observables' - with simple and efficient algorithms, and this is why probabilistic graphical models arise so often in practical applications. This research proposal aims to develop new rigorous analytic and computational methods for understanding Gibbs distributions, and in particular, the physical heuristics that underly two associated algorithms, Markov Chain Monte Carlo and Belief Propagation. The proposal involves three interrelated goals. The first is to make rigorous an detailed family of predictions from statistical physics about Gibbs distributions on random, or "mean-field", networks. Such random networks are used as both an approximation of physical systems and as a model of real-life networks, but have the advantage of being more amenable to analysis.The second goal is to prove mathematically that the original mathematical model of a fluid, the "hard sphere model", exhibits a freezing transition from liquid to solid. The model, which is purely geometric, without any forces between molecules except for excluded volume, dates back to at least Boltzmann's time but has proved extremely resistant to rigorous analysis. The third and final goal is to study the extremes of Gibbs distributions: which networks maximise or minimise certain statistics? Besides delineating the boundaries of what is possible in a given Gibbs distribution, these questions also have connections to long-standing open problems in combinatorics.
“吉布斯分布”的概念是在世纪统计力学兴起时由克劳修斯、麦克斯韦、玻尔兹曼、汉密尔顿和吉布斯提出的,它定义了一种基于局部相互作用控制的能量函数的粒子构型的概率分布。吉布斯分布不仅在描述物理系统的行为方面被证明是非常宝贵的,而且吉布斯分布的简单框架在远离统计物理的领域中已经变得无处不在,称为“概率图形模型”:这些领域包括贝叶斯统计,优化,机器学习,数学生物学,人工智能等等。吉布斯分布非常有效,因为它们尊重复杂系统的底层结构:概率依赖性由简单的网络结构指定,对应于指示系统哪些组件相互作用的网络。虽然吉布斯分布的规定是非常简单的,由此产生的概率分布的配置可以是惊人的复杂。通常,可能的配置的数量作为系统大小的指数函数增长,因此在计算上无法枚举和计算系统的精确统计数据。尽管如此,有时还是有可能用简单有效的算法来理解系统的所有相关全局信息--宏观“可观测量”,这就是为什么概率图形模型在实际应用中如此频繁地出现。这项研究计划旨在开发新的严格的分析和计算方法,以了解吉布斯分布,特别是,两个相关的算法,马尔可夫链蒙特卡罗和信念传播的基础物理学。该提案涉及三个相互关联的目标。第一个是从统计物理学中对随机网络或“平均场”网络上的吉布斯分布做出严格的详细预测。这种随机网络既可以作为物理系统的近似,也可以作为现实生活中网络的模型,但其优点是更易于分析。第二个目标是从数学上证明流体的原始数学模型,即“硬球模型”,表现出从液体到固体的冻结转变。这个模型是纯粹的几何模型,除了排除体积之外,分子之间没有任何力,至少可以追溯到玻尔兹曼的时代,但已经证明非常难以进行严格的分析。第三个也是最后一个目标是研究吉布斯分布的极端:哪些网络最大化或最小化某些统计数据?除了划定给定吉布斯分布中可能的边界外,这些问题还与组合学中长期存在的开放问题有关。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Information-theoretic thresholds from the cavity method
- DOI:10.1145/3055399.3055420
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:A. Coja-Oghlan;Florent Krzakala;Will Perkins;L. Zdeborová
- 通讯作者:A. Coja-Oghlan;Florent Krzakala;Will Perkins;L. Zdeborová
Bethe States of Random Factor Graphs
随机因子图的状态
- DOI:10.1007/s00220-019-03387-7
- 发表时间:2019
- 期刊:
- 影响因子:2.4
- 作者:Coja-Oghlan A
- 通讯作者:Coja-Oghlan A
A short nonalgorithmic proof of the containers theorem for hypergraphs
超图容器定理的简短非算法证明
- DOI:10.1090/proc/14368
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Bernshteyn A
- 通讯作者:Bernshteyn A
Independent sets in algebraic hypergraphs
代数超图中的独立集
- DOI:10.4171/jems/1082
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Bernshteyn, Anton;Delcourt, Michelle;Tserunyan, Anush
- 通讯作者:Tserunyan, Anush
Storage capacity in symmetric binary perceptrons
- DOI:10.1088/1751-8121/ab227a
- 发表时间:2019-07-19
- 期刊:
- 影响因子:2.1
- 作者:Aubin, Benjamin;Perkins, Will;Zdeborova, Lenka
- 通讯作者:Zdeborova, Lenka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Will Perkins其他文献
Potential-weighted connective constants and uniqueness of Gibbs measures
潜在加权连接常数和吉布斯测度的唯一性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Marcus Michelen;Will Perkins - 通讯作者:
Will Perkins
Limits of discrete distributions and Gibbs measures on random graphs
随机图上离散分布和吉布斯测度的极限
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Coja;Will Perkins;Kathrin Skubch - 通讯作者:
Kathrin Skubch
The Widom-Rowlinson model, the hard-core model and the extremality of the complete graph
Widom-Rowlinson模型、硬核模型和全图的极值性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
E. Cohen;P. Csikvári;Will Perkins;P. Tetali - 通讯作者:
P. Tetali
Geometric Barriers for Stable and Online Algorithms for Discrepancy Minimization
用于差异最小化的稳定和在线算法的几何障碍
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
David Gamarnik;Eren C. Kızıldag;Will Perkins;Changji Xu - 通讯作者:
Changji Xu
Extremes of the internal energy of the Potts model on cubic graphs
三次图上 Potts 模型的内能极值
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ewan Davies;Matthew Jenssen;Will Perkins;Barnaby Roberts - 通讯作者:
Barnaby Roberts
Will Perkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 12.9万 - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 12.9万 - 项目类别:
Studentship
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 12.9万 - 项目类别:
EU-Funded
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
- 批准号:
10080598 - 财政年份:2024
- 资助金额:
$ 12.9万 - 项目类别:
EU-Funded
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
- 批准号:
AH/Z000084/1 - 财政年份:2024
- 资助金额:
$ 12.9万 - 项目类别:
Research Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 12.9万 - 项目类别:
Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 12.9万 - 项目类别:
Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 12.9万 - 项目类别:
Fellowship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 12.9万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 12.9万 - 项目类别:
Standard Grant