Combined Magneto-Optical and Fluorescence Lifetime Imaging Microscopy: Towards Cellular Level Magnetic Hyperthermia
磁光和荧光寿命成像显微镜相结合:迈向细胞水平磁热疗
基本信息
- 批准号:EP/P011403/1
- 负责人:
- 金额:$ 103.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in conventional cancer treatments such as chemotherapy and radiotherapy have provided vast improvements in cancer survival rates over recent years. However these techniques inevitably lead to the damage of some healthy tissue and cells, resulting in harmful side effects. Many researchers around the world are therefore working to develop targeted cancer therapies that are tumor-specific, and so destroy cancer cells without affecting surrounding healthy tissue. One such technique, known as hyperthermia, uses heat sources to induce cancer cell death by transiently raising the local temperature in the tumor to above 42 deg C. However, generating local heating in a controlled and non-invasive fashion is difficult with conventional techniques. An alternative method is to use magnetic hyperthermia (or 'thermotherapy') which is an experimental cancer treatment that uses microscopic magnetic particles (nanoparticles) that are only 1/5000th of the width of a human hair. These nanoparticles can channel the energy from an external high-frequency alternating magnetic field in order to create local hot spots. As heating can only occur where nanoparticles are present, the technique is truly local and effects can be obtained by accumulating nanoparticles within tumors. Magnetic hyperthermia has produced encouraging results that show it can reduce the size of tumors, and in recent clinical trials where it was combined with radiotherapy, a significant effect on cancer survival times was reported. However these results were achieved by dispersing very concentrated magnetic nanoparticle fluids around the tumor. Although this represents local heating of the tumor, in order to prevent the cancer from spreading it is essential to kill each and every cancer cell, and so a cellular level heating effect is required. Much work has therefore focused on labelling individual cancer cells with magnetic nanoparticles, either by binding them to cell membranes or by allowing them to be engulfed by the cells. In principle these particles should then be able to heat the cells directly to trigger cell death. However the results of such experiments to date have been somewhat disappointing because it seems the magnetic and heating properties of the nanoparticles can change once they are associated with cells. In order to understand this behaviour it is first necessary to be able to probe the properties of the nanoparticles in real cellular environments, and to see how these vary depending on the microscopic location of the particles, i.e. where they reside inside or externally to cells. The ability to make such measurements would enable a systematic evaluation of how the design and location of the nanoparticles, as well as the magnetic field conditions used, could favourably enhance the magnetic properties and consequently the cellular level heating. Such a study would dramatically boost research on magnetic hyperthermia, taking it much closer to realisation as a viable clinical therapy. However at present no such instrument exists in order to perform this work. Therefore the aim of this project is to create a new type of microscope that can probe both the magnetic and heating properties of nanoparticles in cellular environments. This will be done by exploiting the magnetic dependence of certain optical phenomena, such as the well-known Faraday effect, and combining them with specialist fluorescence based techniques to measure local temperature. As the various components of the instrument take shape they will be used to evaluate the performance of a range of bespoke nanoparticles in order to understand how sufficiently strong cellular-level magnetic hyperthermia effects can be achieved. We are confident that the new instrument produced in this project will provide the step-change advancement required in nanoparticle evaluation to enable magnetic hyperthermia to be a viable and essential technology in the fight against cancer.
近年来,常规癌症治疗(如化疗和放疗)的进展大大提高了癌症生存率。然而,这些技术不可避免地导致一些健康组织和细胞的损伤,从而产生有害的副作用。因此,世界各地的许多研究人员正在努力开发针对肿瘤的靶向癌症疗法,从而在不影响周围健康组织的情况下摧毁癌细胞。一种这样的技术,称为热疗,使用热源通过将肿瘤中的局部温度瞬时升高到42摄氏度以上来诱导癌细胞死亡。然而,用常规技术难以以受控且非侵入性的方式产生局部加热。另一种方法是使用磁热疗(或“热疗”),这是一种实验性的癌症治疗方法,使用的微观磁性颗粒(纳米颗粒)只有人类头发宽度的1/5000。这些纳米颗粒可以从外部高频交变磁场中引导能量,以产生局部热点。由于加热只能发生在纳米颗粒存在的地方,因此该技术是真正的局部,并且可以通过在肿瘤内积累纳米颗粒来获得效果。 磁热疗已经产生了令人鼓舞的结果,表明它可以减小肿瘤的大小,并且在最近的临床试验中,它与放射治疗相结合,对癌症生存时间有显着影响。然而,这些结果是通过将非常浓缩的磁性纳米颗粒流体分散在肿瘤周围来实现的。虽然这代表肿瘤的局部加热,但为了防止癌症扩散,必须杀死每个癌细胞,因此需要细胞水平的加热效应。因此,许多工作都集中在用磁性纳米粒子标记单个癌细胞,要么将它们结合到细胞膜上,要么让它们被细胞吞噬。原则上,这些颗粒应该能够直接加热细胞以触发细胞死亡。然而,到目前为止,这些实验的结果有些令人失望,因为似乎纳米颗粒的磁性和加热特性一旦与细胞结合就会发生变化。 为了理解这种行为,首先需要能够探测纳米颗粒在真实的细胞环境中的性质,并观察这些性质如何根据颗粒的微观位置而变化,即它们在细胞内部或外部的位置。进行这种测量的能力将能够系统地评估纳米颗粒的设计和位置以及所使用的磁场条件如何能够有利地增强磁特性并因此增强细胞水平加热。这样的研究将极大地促进磁热疗的研究,使其更接近于实现作为一种可行的临床治疗。然而,目前还没有这样的文书来进行这项工作。因此,该项目的目的是创建一种新型的显微镜,可以探测细胞环境中纳米颗粒的磁性和加热特性。这将通过利用某些光学现象的磁依赖性来完成,例如众所周知的法拉第效应,并将它们与基于荧光的专业技术相结合来测量局部温度。随着仪器的各种组件成形,它们将用于评估一系列定制纳米颗粒的性能,以了解如何实现足够强的细胞级磁热疗效应。我们相信,该项目中生产的新仪器将提供纳米颗粒评估所需的阶跃式进步,使磁热疗成为对抗癌症的可行且必要的技术。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broadband optical measurement of AC magnetic susceptibility of magnetite nanoparticles
磁铁矿纳米颗粒交流磁化率的宽带光学测量
- DOI:10.1063/1.5140362
- 发表时间:2020
- 期刊:
- 影响因子:4
- 作者:Soucaille R
- 通讯作者:Soucaille R
Nanomaterials for Magnetic and Optical Hyperthermia Applications
用于磁和光热疗应用的纳米材料
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Telling N D
- 通讯作者:Telling N D
Optical Microscopy Using the Faraday Effect Reveals in Situ Magnetization Dynamics of Magnetic Nanoparticles in Biological Samples
- DOI:10.1021/acsnano.3c08955
- 发表时间:2024-02
- 期刊:
- 影响因子:17.1
- 作者:M. E. Sharifabad;Rémy Soucaille;Xuyiling Wang;M. Rotherham;Tom Loughran;James Everett;David Cabrera;Ying Yang;Robert Hicken;Neil Telling
- 通讯作者:M. E. Sharifabad;Rémy Soucaille;Xuyiling Wang;M. Rotherham;Tom Loughran;James Everett;David Cabrera;Ying Yang;Robert Hicken;Neil Telling
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Telling其他文献
Fabrication of Co_2MnAl Heusler Alloy Epitaxial Film Using Cr Buffer Laver
Cr缓冲层制备Co_2MnAl Heusler合金外延薄膜
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
T.Okada;K.Komatsu;T.Kawamoto;T.Yamanaka;H.Kagi;Shuji Yoshikawa;Shuji Yoshikawa;Kenjiro Terada;渡邊育夢;Kenjiro Terada;渡邊育夢;Kenjiro Terada;渡邊育夢;渡邊育夢;渡邊育夢;渡邊育夢;Yuya Sakuraba;Yilgin Resul;Yuya Sakuraba;Yuya Sakuraba;Neil Telling;Yuya Sakuraba;Mikihiko Oogane;Yuya Sakuraba - 通讯作者:
Yuya Sakuraba
Huge Spin-Polarization of L2_1-Ordered Co_2MnSi Heusler Alloy Film
L2_1有序Co_2MnSi Heusler合金薄膜的巨大自旋极化
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
T.Okada;K.Komatsu;T.Kawamoto;T.Yamanaka;H.Kagi;Shuji Yoshikawa;Shuji Yoshikawa;Kenjiro Terada;渡邊育夢;Kenjiro Terada;渡邊育夢;Kenjiro Terada;渡邊育夢;渡邊育夢;渡邊育夢;渡邊育夢;Yuya Sakuraba;Yilgin Resul;Yuya Sakuraba;Yuya Sakuraba;Neil Telling;Yuya Sakuraba;Mikihiko Oogane;Yuya Sakuraba;Yuya Sakuraba - 通讯作者:
Yuya Sakuraba
Magnetic tunnel Junctions using B2-ordered Co_2MnAl Heusler alloy enitaxial electrode
使用B2有序Co_2MnAl Heusler合金外延电极的磁隧道结
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
T.Okada;K.Komatsu;T.Kawamoto;T.Yamanaka;H.Kagi;Shuji Yoshikawa;Shuji Yoshikawa;Kenjiro Terada;渡邊育夢;Kenjiro Terada;渡邊育夢;Kenjiro Terada;渡邊育夢;渡邊育夢;渡邊育夢;渡邊育夢;Yuya Sakuraba;Yilgin Resul;Yuya Sakuraba;Yuya Sakuraba;Neil Telling;Yuya Sakuraba - 通讯作者:
Yuya Sakuraba
Neil Telling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Telling', 18)}}的其他基金
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 103.06万 - 项目类别:
Research Grant
Development of magnetic force biotechnology to facilitate neural regeneration
开发磁力生物技术促进神经再生
- 批准号:
EP/X014126/1 - 财政年份:2023
- 资助金额:
$ 103.06万 - 项目类别:
Research Grant
Nanoscale metallomics and mineralization: advanced spectro-microscopy determination of the role of iron and calcium in Alzheimer's disease
纳米级金属组学和矿化:先进的光谱显微镜测定铁和钙在阿尔茨海默病中的作用
- 批准号:
EP/N033140/1 - 财政年份:2017
- 资助金额:
$ 103.06万 - 项目类别:
Research Grant
Development and validation of a dynamic drug screening platform for ADME testing
用于 ADME 测试的动态药物筛选平台的开发和验证
- 批准号:
EP/M506862/1 - 财政年份:2014
- 资助金额:
$ 103.06万 - 项目类别:
Research Grant
X-ray Spectromicroscopy Studies of Magnetic Iron Biominerals related to Alzheimer’s Disease
与阿尔茨海默病相关的磁性铁生物矿物质的 X 射线光谱显微镜研究
- 批准号:
EP/K00252X/1 - 财政年份:2012
- 资助金额:
$ 103.06万 - 项目类别:
Research Grant
相似海外基金
Magneto-Optical Organic Semiconductors with Spin Amplification (MOOS)
具有自旋放大功能的磁光有机半导体(MOOS)
- 批准号:
EP/Y002555/1 - 财政年份:2024
- 资助金额:
$ 103.06万 - 项目类别:
Research Grant
Magneto-optical metasurface based on topological photonics and spintronics
基于拓扑光子学和自旋电子学的磁光超表面
- 批准号:
23K04619 - 财政年份:2023
- 资助金额:
$ 103.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of magneto-optical measurement techniques with pico-radian resolution
开发具有皮弧度分辨率的磁光测量技术
- 批准号:
23K17670 - 财政年份:2023
- 资助金额:
$ 103.06万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A study on integrated nonreciprocal devices using disk resonators and magneto-optical materials
使用盘式谐振器和磁光材料的集成不可逆器件的研究
- 批准号:
23K03977 - 财政年份:2023
- 资助金额:
$ 103.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
QuSeC-TAQS: Integrated Squeezed-Light Magneto-Optical Sensor
QuSeC-TAQS:集成挤压光磁光传感器
- 批准号:
2326754 - 财政年份:2023
- 资助金额:
$ 103.06万 - 项目类别:
Continuing Grant
LEAPS-MPS: Unveiling the Interplay of Chiral Transport, Magnetism, and Topology in Weyl Magnets: A Magneto-Optical Investigation
LEAPS-MPS:揭示外尔磁体中手性输运、磁性和拓扑的相互作用:磁光研究
- 批准号:
2317013 - 财政年份:2023
- 资助金额:
$ 103.06万 - 项目类别:
Standard Grant
Study of Magneto-Optical Phenomena in Topological Magnets due to Magneto-Electric Effects
磁电效应拓扑磁体磁光现象的研究
- 批准号:
22H01171 - 财政年份:2022
- 资助金额:
$ 103.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of spin dynamics in topological materials using ultrafast magneto-optical effects
利用超快磁光效应研究拓扑材料中的自旋动力学
- 批准号:
22H01151 - 财政年份:2022
- 资助金额:
$ 103.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realization of a compact 2D magneto-optical trap for rubidium
紧凑型铷二维磁光陷阱的实现
- 批准号:
571804-2022 - 财政年份:2022
- 资助金额:
$ 103.06万 - 项目类别:
University Undergraduate Student Research Awards
GOALI: Advancement of Heat-Assisted Magnetic Recording Enabled by Time-Resolved Magneto-Optical Kerr Effect Metrology
GOALI:时间分辨磁光克尔效应计量技术推动热辅助磁记录的进步
- 批准号:
2226579 - 财政年份:2022
- 资助金额:
$ 103.06万 - 项目类别:
Standard Grant