QuSeC-TAQS: Integrated Squeezed-Light Magneto-Optical Sensor

QuSeC-TAQS:集成挤压光磁光传感器

基本信息

  • 批准号:
    2326754
  • 负责人:
  • 金额:
    $ 168万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Quantum sensors promise a new level of accuracy and precision, beyond what is possible classically. They will enable detection of minute variations in magnetic, electric, strain, and gravitational fields. For detecting magnetic fields, improved, compact, portable magnetometers with high sensitivity and low energy consumption are needed for geoscience, navigation, space exploration, and bio-imaging. For these applications, bringing to fruition a chip-scale magnetometer that leverages quantum mechanical phenomena to improve the sensitivity and precision could pave the way for new frontiers in research and cutting-edge technologies. This project will develop a new approach to magnetometry that combines magneto-optical materials with chip-scale integrated photonic circuits using quantum sources of light. By combining magnetometry with quantum entanglement on a single semiconductor photonic chip, this team aims to demonstrate a 10-fold improvement in sensitivity beyond the classical limit, while also demonstrating ultralow power requirements, portability, and room temperature operation. These capabilities could lead to compact and precise sensors for a range of scientific applications such as inertial navigation, studies of planetary magnetospheres, and biomedical sensors. This team will leverage synergies with industry, national labs, and international collaborations to enable student mobility, access to modern tools and instrumentation, and outreach and educational activities that connect with K-12 students and their families. Students in this project will also benefit from exposure to international scientific research.This project will develop a novel quantum magnetometer based on a photonic integrated magneto-optic interferometer where a 10-fold enhancement in the sensitivity beyond the standard quantum limit will be enabled via squeezed light injection. This team expects to achieve a resolution on the scale of femto-Tesla per square root hertz with a dynamic range larger than 100 dB on a monolithically integrated chip-scale platform. This level of sensitivity, dynamic range, ultralow-SWaP, and 300 K operation, enabled by the integration of new magneto-optical materials, an integrated photonic interferometer, and a squeezed light source for noise reduction, would be transformative for the field of precision sensing. Through the duration of the project, this team will develop new magneto-optic materials that improve the sensitivity and efficiency of sensors, develop an ultra-low-loss nonlinear photonics platform for the injection of squeezed light, and integrate them for drone- and space-based quantum-enhanced magnetometry. Interwoven with the research goals is a full-spectrum approach to developing new pathways for a diverse and vibrant quantum-ready workforce that spans K-12 learners and their families to high school, undergraduate, and graduate students, the development of online curriculum for quantum sensing applications, and an international student exchange program. This research could lead to compact and precise quantum-enhanced sensors for many applications that benefit society, from geo-positioning to navigation, space exploration, and bio-imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子传感器承诺了一个新的准确性和精度水平,超越了经典的可能性。它们将能够探测磁场、电场、应变和引力场的微小变化。为了检测磁场,地球科学、导航、空间探索和生物成像需要改进的、紧凑的、具有高灵敏度和低能耗的便携式磁力计。对于这些应用,实现利用量子力学现象提高灵敏度和精度的芯片级磁力计可以为研究和尖端技术的新前沿铺平道路。该项目将开发一种新的磁力测量方法,将磁光材料与使用量子光源的芯片级集成光子电路相结合。通过在单个半导体光子芯片上将磁力测量与量子纠缠相结合,该团队的目标是证明灵敏度超过经典极限的10倍,同时还证明了超低功耗要求,便携性和室温操作。这些能力可能导致紧凑和精确的传感器,用于一系列科学应用,如惯性导航,行星磁层研究和生物医学传感器。该团队将利用与行业,国家实验室和国际合作的协同作用,使学生的流动性,获得现代工具和仪器,以及与K-12学生及其家庭联系的推广和教育活动。该项目的学生还将受益于国际科学研究。该项目将开发一种基于光子集成磁光干涉仪的新型量子磁力计,通过压缩光注入使灵敏度超过标准量子极限10倍。该团队希望在单片集成芯片级平台上实现每平方根赫兹飞秒级的分辨率,动态范围大于100 dB。这种灵敏度、动态范围、超低SWaP和300 K操作水平,通过集成新的磁光材料、集成光子干涉仪和用于降噪的压缩光源实现,将对精密传感领域产生变革性影响。在整个项目期间,该团队将开发新的磁光材料,以提高传感器的灵敏度和效率,开发用于注入压缩光的超低损耗非线性光子学平台,并将其整合用于无人机和空间量子增强磁力测量。与研究目标交织在一起的是一种全方位的方法,为多样化和充满活力的量子就绪劳动力开发新的途径,这些劳动力涵盖K-12学习者及其家庭,高中,本科和研究生,量子传感应用在线课程的开发,以及国际学生交流计划。这项研究可能会导致紧凑和精确的量子增强传感器的许多应用,造福社会,从地理定位到导航,空间探索和生物成像。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Galan Moody其他文献

二次元コヒーレント分光法によるInAs量子ドットにおけるp-shell励起子の位相緩和機構
使用二维相干光谱研究 InAs 量子点中 p 壳层激子的相弛豫机制
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鈴木剛;Rohan Singh;Galan Moody; Marc Assmann;Manfred Beyer;Arne Ludwig;Andreas Wieck;Steven T. Cundiff
  • 通讯作者:
    Steven T. Cundiff
Broadband Entangled-Photon Pair Generation with Integrated Photonics: Guidelines and A Materials Comparison
利用集成光子学生成宽带纠缠光子对:指南和材料比较
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liao Duan;T. Steiner;P. Pintus;L. Thiel;Joshua E. Castro;John E. Bowers;Galan Moody
  • 通讯作者:
    Galan Moody
Stark control
斯塔克控制
  • DOI:
    10.1038/nphys3936
  • 发表时间:
    2016-10-24
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Xiaoqin Li;Galan Moody
  • 通讯作者:
    Galan Moody
Cryogenic optical data link for superconducting circuits
用于超导电路的低温光学数据链路
  • DOI:
    10.1038/s41566-024-01417-y
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    35
  • 作者:
    P. Pintus;Mo Soltani;Galan Moody
  • 通讯作者:
    Galan Moody
Matching index of refraction using a diethyl phthalate/ethanol solution for in vitro cardiovascular models
使用邻苯二甲酸二乙酯/乙醇溶液匹配体外心血管模型的折射率
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Miller;K. Danielson;Galan Moody;A. Slifka;E. Drexler;Jean Hertzberg
  • 通讯作者:
    Jean Hertzberg

Galan Moody的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Galan Moody', 18)}}的其他基金

CAREER: AlGaAs-on-Insulator Integrated Quantum Photonics
职业:绝缘体上 AlGaAs 集成量子光子学
  • 批准号:
    2045246
  • 财政年份:
    2021
  • 资助金额:
    $ 168万
  • 项目类别:
    Continuing Grant
Photonic Integration of Site-Controlled van der Waals Emitters for On-Demand Entangled-Photon Pair Generation
站点控制范德华发射器的光子集成,用于按需生成纠缠光子对
  • 批准号:
    2032272
  • 财政年份:
    2020
  • 资助金额:
    $ 168万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 168万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了