Putting Chaos to Work: Multi-Photon Entanglement in Complex Scattering Media

让混沌发挥作用:复杂散射介质中的多光子纠缠

基本信息

  • 批准号:
    EP/P024114/1
  • 负责人:
  • 金额:
    $ 151.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Long considered one of the big mysteries of quantum physics, entanglement has captured the imaginations of scientists and philosophers alike. Entangled quantum particles behave in a perfectly correlated way, regardless of how far apart they may be! First studied with polarised particles of light called photons, entanglement has today been been demonstrated with individual atoms, superconducting circuits, and even small diamonds. While entanglement certainly tells us something about the strange, counterintuitive ways in which nature behaves, it has recently emerged as a cornerstone of modern quantum technologies that promise unbreakable encryption, ultra-sensitive imaging, and yet-unheard-of computing power. From complex quantum simulators to large-scale quantum cryptographic networks, entangled photons will play a role in almost every future technology based on quantum physics.Generating an entangled state of many photons remains an extremely demanding task in quantum optics. To create even the simplest such states, multiple pairs of entangled photons are intricately combined via a series of optical elements such as mirrors and beam splitters. As the complexity of these states is increased, the network of elements required to create them also becomes rather large. Each element in such a network must also be precisely controlled, which presents a difficult challenge to quantum physicists.When a beam of light impinges on a layer of paint or a sugar cube, it undergoes millions of reflections and transformations. Such everyday objects are surprisingly analogous to a complex network of optical elements, with the difference being that any information transmitted through them is usually lost. In recent years however, advances in technology for shaping the wavefront of light, combined with fast computational algorithms have resulted in unprecedented control over how light propagates through such disordered media. Using these techniques, scientists have achieved remarkable feats such as sending an entire image down an optical fibre the thickness of a human hair!In this project, I am proposing to harness the potential of disordered media as miniature "quantum optics laboratories" for generating, manipulating, and transporting large, complex entangled states of light. By carefully controlling the quantum states of photons entering such media, the millions of scattering events that would normally scramble their quantum information can be put to work for manipulating it instead! In this manner, complex scattering media can be made to serve the same function as large networks of quantum optical elements, while overcoming the problem of control and scalability that normally plague such networks.In my research, I will focus on a specific type of scattering medium called a multi-mode fibre (MMF), which is commonly used in high-speed internet connections. MMFs have certain unique advantages. First, they are cheap, compact, and readily available. Second, due to their natural application in optical communications, they can be used not only for creating entanglement, but also for transporting it. This will allow me to vastly expand the information capacity of modern quantum cryptographic systems and develop practical techniques for supersensitive quantum imaging deep inside biological tissue! Finally, the generation of large, multi-photon entangled states will help me further push the limits of quantum mechanics and gain a better understanding of the complex dance of correlations that is entanglement.
纠缠长期以来被认为是量子物理学的一大谜团,它激发了科学家和哲学家的想象力。纠缠的量子粒子以完全相关的方式表现,无论它们相距多远!纠缠最初是用称为光子的偏振光粒子进行研究的,如今已通过单个原子、超导电路甚至小钻石证明了纠缠。虽然纠缠确实告诉我们一些关于自然行为的奇怪、违反直觉的方式,但它最近已成为现代量子技术的基石,有望提供牢不可破的加密、超灵敏的成像和闻所未闻的计算能力。从复杂的量子模拟器到大规模的量子密码网络,纠缠光子将在几乎所有基于量子物理的未来技术中发挥作用。生成许多光子的纠缠态仍然是量子光学中一项极其艰巨的任务。为了创建最简单的这种状态,多对纠缠光子通过一系列光学元件(例如镜子和分束器)复杂地组合在一起。随着这些状态的复杂性增加,创建它们所需的元素网络也变得相当大。这种网络中的每个元素也必须受到精确控制,这对量子物理学家提出了艰巨的挑战。当一束光照射到一层油漆或一块方糖上时,它会经历数百万次反射和变换。这些日常物体与复杂的光学元件网络惊人地相似,不同之处在于通过它们传输的任何信息通常都会丢失。然而,近年来,塑造光波前技术的进步与快速计算算法相结合,对光如何在这种无序介质中传播产生了前所未有的控制。利用这些技术,科学家们取得了非凡的成就,例如通过人类头发粗细的光纤发送整个图像!在这个项目中,我建议利用无序介质作为微型“量子光学实验室”的潜力,来生成、操纵和传输大型、复杂的纠缠态光。通过仔细控制进入此类介质的光子的量子态,通常会扰乱其量子信息的数百万个散射事件可以用来操纵它!通过这种方式,可以使复杂的散射介质发挥与大型量子光学元件网络相同的功能,同时克服通常困扰此类网络的控制和可扩展性问题。在我的研究中,我将重点关注一种称为多模光纤(MMF)的特定类型的散射介质,它通常用于高速互联网连接。 MMF 具有某些独特的优势。首先,它们便宜、紧凑且容易获得。其次,由于它们在光通信中的自然应用,它们不仅可以用于产生纠缠,还可以用于传输纠缠。这将使我能够极大地扩展现代量子密码系统的信息容量,并开发生物组织深处超灵敏量子成像的实用技术!最后,大型多光子纠缠态的生成将帮助我进一步突破量子力学的极限,并更好地理解纠缠这一复杂的相关性舞蹈。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Demonstration of chip-to-chip quantum teleportation
芯片间量子隐形传态演示
  • DOI:
    10.1364/cleo_at.2019.jth5c.4
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ding Y
  • 通讯作者:
    Ding Y
l 00 l entanglement and the twisted quantum eraser
l 00 l 纠缠与扭曲的量子橡皮擦
  • DOI:
    10.1116/5.0167938
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danese D
  • 通讯作者:
    Danese D
Measuring azimuthal and radial modes of photons.
  • DOI:
    10.1364/oe.26.031925
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    F. Bouchard;Natalia Herrera Valencia;Florian Brandt;R. Fickler;M. Huber;M. Malik
  • 通讯作者:
    F. Bouchard;Natalia Herrera Valencia;Florian Brandt;R. Fickler;M. Huber;M. Malik
Genuine high-dimensional quantum steering
真正的高维量子操控
  • DOI:
    10.48550/arxiv.2007.02718
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Designolle S
  • 通讯作者:
    Designolle S
Overcoming Noise in Entanglement Distribution
  • DOI:
    10.1103/physrevx.9.041042
  • 发表时间:
    2019-11-26
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Ecker, Sebastian;Bouchard, Frederic;Huber, Marcus
  • 通讯作者:
    Huber, Marcus
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehul Malik其他文献

A Roadmap Towards Entanglement Distribution Over Useful Telecom Distances
有用电信距离上纠缠分布的路线图
Entanglement certification from theory to experiment
从理论到实验的纠缠认证
  • DOI:
    10.1038/s42254-018-0003-5
  • 发表时间:
    2018-12-19
  • 期刊:
  • 影响因子:
    39.500
  • 作者:
    Nicolai Friis;Giuseppe Vitagliano;Mehul Malik;Marcus Huber
  • 通讯作者:
    Marcus Huber

Mehul Malik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

JOSEPHSONJUNCTION的动力学与紊动(CHAOS)现象
  • 批准号:
    18670411
  • 批准年份:
    1986
  • 资助金额:
    0.55 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Dynamics and Quantum Chaos
量子动力学和量子混沌
  • 批准号:
    2894416
  • 财政年份:
    2023
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Studentship
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
  • 批准号:
    2348453
  • 财政年份:
    2023
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Standard Grant
Investigation of synchronized phenomena and its application to chaos control in a laboratory plasma
同步现象的研究及其在实验室等离子体混沌控制中的应用
  • 批准号:
    23K03355
  • 财政年份:
    2023
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chaos Creator
混沌创造者
  • 批准号:
    10067450
  • 财政年份:
    2023
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Collaborative R&D
Fast Chaos Detection through Data-Driven Approach
通过数据驱动方法进行快速混沌检测
  • 批准号:
    23K16963
  • 财政年份:
    2023
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
  • 批准号:
    2306332
  • 财政年份:
    2023
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Standard Grant
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
  • 批准号:
    EP/Y01653X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Fellowship
Wasserstein-Type Gradient Flow via Propagation by Chaos for a Continuous Formulation of a Shallow Neural Network
通过混沌传播的 Wasserstein 型梯度流用于连续制定浅层神经网络
  • 批准号:
    2879236
  • 财政年份:
    2023
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Studentship
Development of an optimization method using chaos for spin devices
开发利用混沌的自旋器件优化方法
  • 批准号:
    23KJ0331
  • 财政年份:
    2023
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
  • 批准号:
    EP/V055755/1
  • 财政年份:
    2022
  • 资助金额:
    $ 151.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了