Ferroelectric, Ferroelastic and Multiferroic Domain Walls: a New Horizon in Nanoscale Functional Materials

铁电、铁弹性和多铁畴壁:纳米功能材料的新视野

基本信息

  • 批准号:
    EP/P02453X/1
  • 负责人:
  • 金额:
    $ 77.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Some functional materials, such as ferroelectrics, contain membrane or sheet structures called "domain walls". For decades, domain walls were dismissed as being minor microstructural components of little significance. It is now clear that nothing could be further from the truth. Domain walls often, in fact, have unique functional properties that are completely different from the domains that they surround: they can be conductors or superconductors when the rest of the material is insulating; they can display magnetic order in non-magnetic crystals and they can possess aligned electrical dipoles when the matrix surrounding them is non-polar. In effect, domain walls represent a new class of sheet-like nanoscale functional material. Gaining a basic understanding of the behaviour of such a new family of sheet materials, which already shows a very wide gamut of properties, is certainly worthwhile, but domain walls offer so much more: uniquely, they are spatially mobile, can be controllably shunted from point to point, and can be spontaneously created, or made to disappear. This unique "now-you-see-it, now-you-don't" dynamic property could radically alter the way in which we think about the integration of functional materials into devices and the way in which device functionality is enabled: functionally active domain walls themselves could be introduced or removed as the primary mechanism in device operation. As a simple example, a new form of transistor could readily be envisaged where switching between the "ON" and "OFF" states is achieved through the injection and annihilation respectively of conducting domain wall channels connecting the source and drain electrodes. Multiple controlled domain wall injection events (resulting from sequential pulses in electrical bias between source and drain, for example) could create a series of different resistance states, depending on the number of conducting walls introduced. Thus a new kind of memristor device could be created. Possibilities for future domain wall-based applications are tantalising. However, relevant research is still at an early stage; a great deal needs to be done to establish the basic physics of the functional behavior of domain walls and strategies need to be developed to allow their reliable deployment with nanoscale precision. Only then can the potential for domain wall based devices be properly assessed.In this Critical Mass Grant, we seek to harness the collaborative effort of a number of world-class UK-based academic teams (in Cambridge, St. Andrews, Warwick and Belfast) to explore novel functionally active ferroelectric, ferroelastic and multiferroic domain walls. Together, we will: (i) Generate badly needed new and fundamental insight into the properties of known functionally active domain wall systems;(ii) Perform smart searches for new functionally active domain wall systems;(iii) Demonstrate simple electronic and thermal devices (transistors, memristors and smart heat transfer chips) in which domain wall properties are the key to device performance and hence assess the potential for wider domain wall-based applications.
一些功能材料,如铁电体,包含称为“畴壁”的膜或片结构。几十年来,畴壁被认为是意义不大的微观结构成分而被忽视。现在很清楚,没有什么比这更远离真相了。事实上,畴壁通常具有独特的功能特性,与它们周围的畴完全不同:当材料的其余部分是绝缘的时,它们可以是导体或超导体;它们可以在非磁性晶体中显示磁序,并且当它们周围的基质是非极性时,它们可以拥有对齐的电偶极子。实际上,畴壁代表了一类新的片状纳米级功能材料。获得对这种新的片状材料家族的行为的基本理解当然是值得的,它已经显示出非常广泛的性质,但是畴壁提供了更多:独特的是,它们在空间上是移动的,可以可控地从一点分流到另一点,并且可以自发地创建或消失。这种独特的“现在你看到它,现在你不”的动态属性可能会从根本上改变我们考虑功能材料集成到设备中的方式以及设备功能实现的方式:功能活性畴壁本身可以作为设备操作的主要机制引入或移除。作为一个简单的例子,可以容易地设想一种新形式的晶体管,其中通过分别注入和湮灭连接源电极和漏电极的导电畴壁沟道来实现“导通”和“截止”状态之间的切换。多个受控畴壁注入事件(例如,由源极和漏极之间的电偏置中的顺序脉冲引起)可以产生一系列不同的电阻状态,这取决于引入的导电壁的数量。因此,一种新型的忆阻器器件可以被创造出来。未来基于畴壁的应用前景诱人。然而,相关的研究仍处于早期阶段;需要做大量的工作来建立畴壁功能行为的基本物理学,并且需要开发策略以允许它们以纳米级精度可靠地部署。在这个临界质量基金中,我们寻求利用一些世界级的英国学术团队(在剑桥,圣安德鲁斯,沃里克和贝尔法斯特)的合作努力,探索新的功能活性铁电,铁弹性和多铁性畴壁。我们将共同:(i)对已知的功能活性畴壁系统的性质产生急需的新的和基本的见解;(ii)对新的功能活性畴壁系统进行智能搜索;(iii)展示简单的电子和热器件(晶体管、忆阻器和智能传热芯片),其中畴壁性质是器件性能的关键,从而评估更广泛的基于畴壁的应用的潜力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observation of Unconventional Dynamics of Domain Walls in Uniaxial Ferroelectric Lead Germanate
  • DOI:
    10.1002/adfm.202000284
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    19
  • 作者:
    O. Bak;T. S. Holstad;Yueze Tan;Haidong Lu;D. Evans;K. Hunnestad;Bo Wang;J. McConville;P. Becker;L. Bohatý;I. Lukyanchuk;V. Vinokur;A. V. van Helvoort;J. Gregg;Long-qing Chen;D. Meier;A. Gruverman
  • 通讯作者:
    O. Bak;T. S. Holstad;Yueze Tan;Haidong Lu;D. Evans;K. Hunnestad;Bo Wang;J. McConville;P. Becker;L. Bohatý;I. Lukyanchuk;V. Vinokur;A. V. van Helvoort;J. Gregg;Long-qing Chen;D. Meier;A. Gruverman
Nanodomain patterns in ultra-tetragonal lead titanate (PbTiO3)
  • DOI:
    10.1063/5.0007148
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Amit Kumar;J. Guy;Linxing Zhang;Jun Chen;J. Gregg;J. Scott
  • 通讯作者:
    Amit Kumar;J. Guy;Linxing Zhang;Jun Chen;J. Gregg;J. Scott
Influence of charged walls and defects on DC resistivity and dielectric relaxation in Cu-Cl boracite
带电壁和缺陷对 Cu-Cl 方硼石直流电阻率和介电弛豫的影响
  • DOI:
    10.48550/arxiv.2108.08582
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cochard C
  • 通讯作者:
    Cochard C
Imaging Ferroelectrics: Reinterpreting Charge Gradient Microscopy as Potential Gradient Microscopy
  • DOI:
    10.1002/aelm.202101384
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    J. R. Maguire;Hamza Waseem;R. G. McQuaid;Amit Kumar;J. Gregg;C. Cochard
  • 通讯作者:
    J. R. Maguire;Hamza Waseem;R. G. McQuaid;Amit Kumar;J. Gregg;C. Cochard
Influence of charged walls and defects on DC resistivity and dielectric relaxations in Cu-Cl boracite
带电壁和缺陷对 Cu-Cl 方硼石直流电阻率和介电弛豫的影响
  • DOI:
    10.1063/5.0067846
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Cochard C
  • 通讯作者:
    Cochard C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J M Gregg其他文献

J M Gregg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J M Gregg', 18)}}的其他基金

Addressing Current Issues in Multiferroics
解决多铁性的当前问题
  • 批准号:
    EP/J017191/1
  • 财政年份:
    2012
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Research Grant
Visiting Researcher Support for Prof Nagarajan Valanoor (University of New South Wales)
Nagarajan Valanoor 教授(新南威尔士大学)的客座研究员支持
  • 批准号:
    EP/H04339X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Research Grant
Critical Scaling of Domain Dynamics in Ferroelectric Nanoelements
铁电纳米元件中域动力学的临界尺度
  • 批准号:
    EP/H047093/1
  • 财政年份:
    2010
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Research Grant
Investigating the fabrication and dipole characteristics of complex ferroelectric nanoshapes
研究复杂铁电纳米形状的制造和偶极子特性
  • 批准号:
    EP/F004869/1
  • 财政年份:
    2008
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333552
  • 财政年份:
    2024
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Continuing Grant
Development and Validation of a Ferroelastic-Fracture Coupled Model for Tough SOFCs with High Efficiency
高效坚韧 SOFC 的铁弹性断裂耦合模型的开发和验证
  • 批准号:
    22H01367
  • 财政年份:
    2022
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Traversals in Transformation Strain Space and Microstructure Design for High Performance Ferroelastic Materials
合作研究:高性能铁弹性材料的变换应变空间遍历和微观结构设计
  • 批准号:
    1923929
  • 财政年份:
    2020
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: Traversals in Transformation Strain Space and Microstructure Design for High Performance Ferroelastic Materials
合作研究:高性能铁弹性材料的变换应变空间遍历和微观结构设计
  • 批准号:
    1923976
  • 财政年份:
    2020
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Continuing Grant
Development of MPB free piezoelectric materials by reversible ferroelastic domain switching
通过可逆铁弹域切换开发无 MPB 压电材料
  • 批准号:
    19K15288
  • 财政年份:
    2019
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a Ferroelastic Constitutive Model Using Micro-Mesodynamics Coupling and Its Application to SOFC
利用微细观动力学耦合的铁弹性本构模型的建立及其在 SOFC 中的应用
  • 批准号:
    19K14845
  • 财政年份:
    2019
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ferroelectric, Ferroelastic and Multiferroic Domain Walls: a New Horizon in Nanoscale Functional Materials
铁电、铁弹性和多铁畴壁:纳米功能材料的新视野
  • 批准号:
    EP/P024637/1
  • 财政年份:
    2017
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Research Grant
Enormous residual stress in ferroelastic ceramics and its application as energy storage materials
铁弹性陶瓷的巨大残余应力及其储能材料应用
  • 批准号:
    17K18819
  • 财政年份:
    2017
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Ferroelectric, ferroelastic, and multiferroic domain walls: a new horizon in functional materials
铁电、铁弹性和多铁畴壁:功能材料的新视野
  • 批准号:
    EP/P025803/1
  • 财政年份:
    2017
  • 资助金额:
    $ 77.48万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了