Shining light on cold atmospheric plasmas and their interaction with liquids
照亮冷大气等离子体及其与液体的相互作用
基本信息
- 批准号:EP/P026621/1
- 负责人:
- 金额:$ 57.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cold atmospheric plasmas, CAPs, operate in air and are a rich source of reactive oxygen and nitrogen species, RONS. Many of these RONS are also produced naturally in cells and can regulate cellular and physiological processes, and as such are relevant to medical science. CAPs are finding an increasing number of medical applications; when applied to living tissue, they can effectively decontaminate wounds covered with bacterial biofilms and destroy, or at least significantly reduce the size of, cancerous tumours. It is currently assumed that the underlying mechanisms by which plasma influences biological activity are defined by the way in which plasma-generated RONS interact with the components of biological liquid, cells and tissue. However, it is unclear how plasma-generated RONS stimulate cell death deep within a biofilm or tumour, which could be micrometres to millimetres in thickness. In the context of cancer treatment, it has been suggested that RONS, generated by plasma at the surface of the tumour, stimulate cellular signalling mechanisms that trigger cell death and that these signals are transmitted deeper into the tissue through cell-to-cell communication, in a manner similar to that seen in other forms of cell stress. While these hypotheses seem credible given that many of the RONS generated directly by plasma are highly reactive, have short lifetimes and can only diffuse over a short distance in real tissues, there is in fact little or no quantitative evidence to back this up - this proposal seeks to address this situation by applying state-of-the-art spectroscopic methods to this problem. The work will quantify the absolute concentrations of important plasma-generated RONS in the gas phase as they impinge upon pure water and biological interfaces, identifying and determining the kinetics of formation and loss of secondary RONS within the liquid phase, and determining the end point chemistry. These studies will be conducted in real time and with a spatial resolution of a few microns or less, and offer a step-change in our understanding of this application of plasma science. In particular, it will allow the diffusion length of the highly toxic peroxynitrite radical to be determined for the first time, providing crucial evidence to help determine the mechanism of plasma-induced destruction of micro-organisms and cancer cells within biofilms and tumours. The work will determine the penetration depth of plasma-generated RONS into a biologically relevant target, such as agarose, a polysaccharide polymer material which is a surrogate for real tissue, and will explore the dependence of the RONS penetration depth upon the CAP jet exposure time and plasma source-target distance, as well as the composition and thickness of the surrogate tissue. The data will be important for the future development of plasma medical devices and for avoiding unwanted tissue damage. Monitoring the transport of RONS in real time through a biofilm and within the liquid phase will shed light on the hypothesis that plasma may not only stimulate the deactivation of biofilms and tumours at a tissue's surface, but potentially deliver RONS into cells embedded deep within affected tissue.A detailed theoretical understanding of the mechanisms by which RONS are generated, transported and lost, both within and between the gas and liquid phases, will be provided by development of a state-of-the-art reaction diffusion model which will be optimised by reference to the new experimental data.
冷大气等离子体(CAPS)在空气中运行,是活性氧和氮物种RON的丰富来源。这些核糖体中的许多也是在细胞中自然产生的,可以调节细胞和生理过程,因此与医学相关。CAPS在医学上的应用越来越多;当应用于活组织时,它们可以有效地净化覆盖着细菌生物膜的伤口,并摧毁或至少显著缩小癌症肿瘤的大小。目前的假设是,等离子体影响生物活性的潜在机制是由等离子体产生的RON与生物液体、细胞和组织的成分相互作用的方式定义的。然而,目前尚不清楚等离子体产生的Ron如何刺激生物膜或肿瘤深处的细胞死亡,这些生物膜或肿瘤的厚度可能是微米到毫米。在癌症治疗的背景下,有人提出,肿瘤表面的等离子体产生的RON刺激触发细胞死亡的细胞信号机制,并且这些信号通过细胞间的通信被更深地传递到组织中,其方式类似于在其他形式的细胞应激中看到的方式。尽管这些假设似乎可信,因为许多由等离子体直接产生的Ron是高度活性的,寿命很短,并且只能在真实组织中短距离扩散,但实际上几乎没有定量证据支持这一点--这项建议试图通过应用最先进的光谱方法来解决这种情况。这项工作将量化重要的等离子体产生的Ron在气相中的绝对浓度,当它们撞击到纯水和生物界面时,识别和确定二次Ron在液体中形成和损失的动力学,并确定终点化学。这些研究将以几微米或更小的空间分辨率实时进行,并为我们对等离子体科学的这一应用提供一个阶段性的改变。特别是,它将首次确定剧毒的过氧亚硝酸根的扩散长度,为帮助确定等离子体诱导破坏生物膜和肿瘤内的微生物和癌细胞的机制提供关键证据。这项工作将确定等离子体产生的RON对生物相关靶的穿透深度,例如琼脂糖,一种作为真实组织替代品的多糖聚合物材料,并将探索RONS穿透深度与CAP喷射暴露时间和等离子体源-靶距离以及替代组织的成分和厚度的关系。这些数据将对等离子医疗设备的未来发展和避免不必要的组织损伤具有重要意义。实时监测RON在生物膜和液相中的传输将有助于阐明这样一个假设,即等离子体不仅可能刺激组织表面的生物膜和肿瘤的失活,而且可能将RON输送到深入受影响组织中的细胞中。通过开发最先进的反应扩散模型,将提供对RON在气相和液相内和之间产生、传输和丢失的机制的详细理论理解,该模型将通过参考新的实验数据进行优化。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The spatial distribution of HO 2 in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy
通过腔衰荡光谱研究大气压等离子体射流中HO 2 的空间分布
- DOI:10.1088/1361-6595/aba206
- 发表时间:2020
- 期刊:
- 影响因子:3.8
- 作者:Klose S
- 通讯作者:Klose S
Cavity ringdown studies of the E-H transition in an inductively coupled oxygen plasma: comparison of spectroscopic measurements and modelling
电感耦合氧等离子体中 E-H 转变的腔衰荡研究:光谱测量和建模的比较
- DOI:10.1088/1361-6595/ac9d62
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Rogers S
- 通讯作者:Rogers S
Quantitative measurements of oxygen atom and negative ion densities in a low pressure oxygen plasma by cavity ringdown spectroscopy
通过腔衰荡光谱法定量测量低压氧等离子体中的氧原子和负离子密度
- DOI:10.1088/1361-6595/ab7840
- 发表时间:2020
- 期刊:
- 影响因子:3.8
- 作者:Peverall R
- 通讯作者:Peverall R
Insights into spatial inhomogeneity in an oxygen plasma from cavity ringdown spectroscopy
从腔衰荡光谱中洞察氧等离子体的空间不均匀性
- DOI:10.1088/1361-6595/ad1a79
- 发表时间:2024
- 期刊:
- 影响因子:3.8
- 作者:Rogers S
- 通讯作者:Rogers S
Quantitative measurements of singlet molecular oxygen in a low pressure ICP
低压 ICP 中单线态分子氧的定量测量
- DOI:10.1088/1361-6595/ac2044
- 发表时间:2021
- 期刊:
- 影响因子:3.8
- 作者:Rogers S
- 通讯作者:Rogers S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grant Ritchie其他文献
Grant Ritchie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grant Ritchie', 18)}}的其他基金
Complex Chemistry and Chemical Activation
复杂化学和化学活化
- 批准号:
EP/V029630/1 - 财政年份:2021
- 资助金额:
$ 57.3万 - 项目类别:
Research Grant
The Idealised Lung Clearance Index: tuning in to the silent years of cystic fibrosis
理想的肺清除指数:适应囊性纤维化的沉默岁月
- 批准号:
EP/T001186/1 - 财政年份:2020
- 资助金额:
$ 57.3万 - 项目类别:
Research Grant
Functional location of airway inflammation in eosinophilic asthma
嗜酸性粒细胞性哮喘气道炎症的功能定位
- 批准号:
EP/R042160/1 - 财政年份:2018
- 资助金额:
$ 57.3万 - 项目类别:
Research Grant
INFAMOS - a new method for speciated peroxy radical detection
INFAMOS - 一种检测形态过氧自由基的新方法
- 批准号:
NE/M016439/1 - 财政年份:2015
- 资助金额:
$ 57.3万 - 项目类别:
Research Grant
Infrared emission from the quenching of electronically excited states
电子激发态淬灭产生的红外发射
- 批准号:
EP/L025833/1 - 财政年份:2014
- 资助金额:
$ 57.3万 - 项目类别:
Research Grant
相似国自然基金
上调间充质干细胞LIGHT、IL-21及
Sig lec-10用于卵巢癌免疫协同增效治疗
的多模态影像学研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
LIGHT促NLRP3炎症小体活化介导他克莫司所致肾纤维化的作用机制研究
- 批准号:82300855
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LIGHT/HVEM-亮氨酸轴异常引起蜕膜基质细胞过度衰老致复发流产的机制研究
- 批准号:32370914
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
LIGHT-HVEM通路提升CAR-T细胞抗肿瘤活性的机制研究
- 批准号:82202031
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LIGHT/TNFSF14通路对缺血再灌注肾损伤中细胞铁死亡影响的实验研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
气道上皮细胞经LIGHT/HVEM通路调控哮喘气道微环境内稳态的机制及干预研究
- 批准号:2020A151501040
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
MSCs通过免疫刺激因子LIGHT介导抗原缺失变异性乳腺癌的免疫效应及机制
- 批准号:LY21H160003
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Light助力中国科研团队提升国际影响力
- 批准号:
- 批准年份:2020
- 资助金额:6 万元
- 项目类别:专项基金项目
LIGHT(TNFSF14)诱导子痫前期的机制及其转化医学研究
- 批准号:2019JJ20035
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
Light助力中国科研团队提升国际影响力
- 批准号:
- 批准年份:2019
- 资助金额:5 万元
- 项目类别:专项基金项目
相似海外基金
Point-of-Care Diagnosis of Esophageal Cancer in LMICs
中低收入国家食管癌的即时诊断
- 批准号:
10649166 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Cellular, molecular and physical mechanisms of vitreous structural heterogeneity underlying posterior vitreous detachment
玻璃体后脱离的玻璃体结构异质性的细胞、分子和物理机制
- 批准号:
10740173 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Understanding mitochondrial movement and turnover in stressed and unstressed photoreceptors
了解应激和非应激光感受器中的线粒体运动和周转
- 批准号:
10461549 - 财政年份:2022
- 资助金额:
$ 57.3万 - 项目类别:
Decoding Viral Control of Host Kinase Signaling to Design Combination Therapy
解码病毒对宿主激酶信号传导的控制以设计联合疗法
- 批准号:
10449933 - 财政年份:2022
- 资助金额:
$ 57.3万 - 项目类别:
Simple Method for Screening of HIV Drug Resistance in Resource-Limited Settings
在资源有限的环境中筛查 HIV 耐药性的简单方法
- 批准号:
10384759 - 财政年份:2022
- 资助金额:
$ 57.3万 - 项目类别:
Development of Optofluidic Resonators for Filoviral Detection
用于丝状病毒检测的光流控谐振器的开发
- 批准号:
10506889 - 财政年份:2022
- 资助金额:
$ 57.3万 - 项目类别:
Novel organic-ion-based technology for long-term virus preservation at ambient temperature
基于有机离子的新型技术,可在环境温度下长期保存病毒
- 批准号:
10662945 - 财政年份:2022
- 资助金额:
$ 57.3万 - 项目类别:
Novel organic-ion-based technology for long-term virus preservation at ambient temperature
基于有机离子的新型技术,可在环境温度下长期保存病毒
- 批准号:
10369847 - 财政年份:2022
- 资助金额:
$ 57.3万 - 项目类别:
CALYX : Cold-Atom Light via efficient Cavity Extraction
CALYX:通过高效腔提取的冷原子光
- 批准号:
10031364 - 财政年份:2022
- 资助金额:
$ 57.3万 - 项目类别:
Collaborative R&D