Self-assembled molecular monolayers with ultra-low thermal conductance for energy harvesting (QSAMs)

用于能量收集的具有超低热导的自组装单分子层(QSAM)

基本信息

  • 批准号:
    EP/P027172/1
  • 负责人:
  • 金额:
    $ 45.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

In single molecules, vibrations due to heat (phonons) and electrons both behave quantum-mechanically like waves and so they can exhibit interference, which can be used to manipulate them. It turns out that constructive or destructive interference of phonons and electrons within individual organic molecules can be engineered precisely by the addition of various atomic groups to the molecule or by carefully selecting the connection of the molecule to external electrodes. Although manipulation of room-temperature quantum interference (RTQI) of electrons in single molecules has been realised recently and is a topic of intense competition between research groups in the UK and abroad, simultaneous control of room-temperature phonon interference (RTPI) has not yet been achieved. This project, called QSAMs, aims to deliver the next breakthrough by designing and realising technologically-relevant materials and devices, which exploit both RTPI and RTQI to yield the next generation of thermoelectric materials.Electricity for information technologies currently results in carbon emissions that are comparable to those of the total global aviation industry. QSAMs aims to address the global challenge of reducing these emissions significantly by inventing new materials that efficiently convert the waste heat produced by data centres (or example) into useful electricity. Our target materials are thin films formed from single layers or a few layers of molecules, sandwiched between flat electrodes. Interference will be used to optimise their ability to convert waste heat into electricity and for on-chip cooling. This will be achieved by modifying the vibrational properties of molecules with a high RTQI-driven Seebeck coefficient, which determines the voltage generated when a temperature difference is applied to the two sides of a molecule or a thin film. Conversely, if a voltage is applied across a molecule, the closely-related Peltier coefficient determines the magnitude of the cooling effect that can be created.A crucial property important for heat recovery (in addition to the electrical conductance and the Seebeck coefficient) is the thermal conductance, which needs to be low. Within a bulk material it is difficult to engineer simultaneously high electrical conductance and low thermal conductance. However, for single molecules or thin molecular films attached to electrodes, the thermal conductance can be engineered by synthesising Christmas-tree-like molecules (connected to the electrodes at top and bottom), in which the trunk of the molecule is connected to branches coming out of the sides, which oscillate in such a way as to cancel out the phonon waves flowing along the trunk. Phonon transport can be further reduced by selecting slippery anchor groups for binding the molecules to the electrodes, in order to scatter phonons at the contacts between the molecules and electrodes. The technical challenges that this proposal addresses are three-fold. The first is to identify theoretically families of molecules that will have the propensity for large RTQI and RTPI effects, and to predict which atomic groups and which anchor groups will optimise their properties. The second is to synthesise these molecules and the third is to measure and optimise their properties in a vast parallel array of molecules, known as a self-assembled monolayer. Understanding the hurdles that need to be overcome to realise simultaneously RTPI and RTQI in such macroscopic ultra-thin-film arrays of molecules will help identify the first steps to a new type of technology that has important societal and economic impacts in the real world and addresses pressing problems of on-chip cooling and energy-efficient heat recovery.
在单分子中,由于热(声子)和电子的振动都表现出量子力学的行为,就像波一样,所以它们可以表现出干涉,可以用来操纵它们。事实证明,通过在分子中添加不同的原子基团或仔细选择分子与外部电极的连接,可以精确地设计单个有机分子中声子和电子的相长或破坏性干扰。尽管操纵单分子中电子的室温量子干涉(RTQI)是最近实现的,也是英国和国外研究小组激烈竞争的主题,但尚未实现对室温声子干涉(RTPI)的同时控制。这个名为QSAMS的项目旨在通过设计和实现与技术相关的材料和设备来实现下一项突破,这些材料和设备利用RTPI和RTQI来生产下一代热电材料。目前,信息技术的电性导致的碳排放相当于全球航空业的总排放量。QSAMS旨在通过发明新材料,有效地将数据中心(或例如)产生的废热转化为有用的电力,来应对大幅减少这些排放的全球挑战。我们的目标材料是夹在平板电极之间的单层或几层分子形成的薄膜。干扰将被用来优化他们将余热转化为电能和芯片上冷却的能力。这将通过使用高RTQI驱动的塞贝克系数来改变分子的振动特性来实现,塞贝克系数决定了当温差施加到分子或薄膜的两侧时产生的电压。相反,如果在分子上施加电压,密切相关的珀尔蒂埃系数决定了可以产生的冷却效应的大小。热回收的一个重要属性(除了电导和塞贝克系数之外)是热导,它需要很低。在一种块状材料中,很难同时设计高电导和低热导。然而,对于附着在电极上的单分子或薄分子薄膜,可以通过合成圣诞树状的分子(连接到顶部和底部的电极)来设计热导,其中分子的主干连接到从两侧伸出的分支,分支以一种抵消沿主干流动的声子波的方式振荡。通过选择光滑的锚基将分子结合到电极上,以便在分子和电极之间的接触处散射声子,可以进一步减少声子的传输。这项提议解决的技术挑战有三个方面。第一个是从理论上确定具有较大RTQI和RTPI效应倾向的分子家族,并预测哪些原子基团和哪些锚基将优化它们的性质。第二个是合成这些分子,第三个是在一个巨大的平行分子阵列中测量和优化它们的性质,这被称为自组装单分子膜。了解在这种宏观的超薄膜分子阵列中同时实现RTPI和RTQI需要克服的障碍,将有助于确定在现实世界中具有重要社会和经济影响的新型技术的第一步,并解决芯片上冷却和节能热回收的紧迫问题。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoscale Thermal Transport in 2D Nanostructures from Cryogenic to Room Temperature
  • DOI:
    10.1002/aelm.201900331
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    C. Evangeli;J. Spièce;S. Sangtarash;A. Molina‐Mendoza;M. Mucientes;T. Mueller;C. Lambert;H. Sadeghi;O. Kolosov
  • 通讯作者:
    C. Evangeli;J. Spièce;S. Sangtarash;A. Molina‐Mendoza;M. Mucientes;T. Mueller;C. Lambert;H. Sadeghi;O. Kolosov
Tuning the thermoelectrical properties of anthracene-based self-assembled monolayers.
  • DOI:
    10.1039/d0sc02193h
  • 发表时间:
    2020-07-14
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Ismael A;Wang X;Bennett TLR;Wilkinson LA;Robinson BJ;Long NJ;Cohen LF;Lambert CJ
  • 通讯作者:
    Lambert CJ
Optimised power harvesting by controlling the pressure applied to molecular junctions.
通过控制施加到分子连接的压力来优化功率收获。
  • DOI:
    10.1039/d1sc00672j
  • 发表时间:
    2021-03-04
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Wang X;Ismael A;Almutlg A;Alshammari M;Al-Jobory A;Alshehab A;Bennett TLR;Wilkinson LA;Cohen LF;Long NJ;Robinson BJ;Lambert C
  • 通讯作者:
    Lambert C
Electrostatic Fermi level tuning in large-scale self-assembled monolayers of oligo(phenylene-ethynylene) derivatives.
低聚(亚苯基-乙炔基)衍生物大规模自组装单层的静电费米能级调谐。
  • DOI:
    10.1039/d2nh00241h
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Wang X
  • 通讯作者:
    Wang X
Molecular-scale thermoelectricity: as simple as 'ABC'.
  • DOI:
    10.1039/d0na00772b
  • 发表时间:
    2020-11-11
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Ford其他文献

Could pre-surgical genomic testing inform neoadjuvant chemotherapy decision making in breast cancer and increase patient individualised surgical options?
  • DOI:
    10.1016/j.ejso.2022.11.236
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Ford;Hilary Regan;Kishore Konar;Gaural Patel;Angus Molyneux
  • 通讯作者:
    Angus Molyneux
A CASE OF GIANT LEFT ATRIAL APPENDAGE WITH ATRIAL FIBRILLATION MASQUERADING AS SYMPTOMATIC PERICARDIAL EFFUSION
  • DOI:
    10.1016/s0735-1097(21)04044-4
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Ford;Joseph M. O'Brien;David Irvin;Janice Chow;Jaya Chandrasekhar
  • 通讯作者:
    Jaya Chandrasekhar
Nutrigenomics, Inflammaging, and Osteoarthritis: A Review
营养基因组学、炎症和骨关节炎:综述
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Mobasheri;Richard Barret;C. Staunton;Christopher Ford;Y. Henrotin
  • 通讯作者:
    Y. Henrotin
PAROXYSMAL SEVERE ISCHAEMIC MITRAL REGURGITATION WITHOUT OBSTRUCTIVE CORONARY ARTERY DISEASE
无阻塞性冠状动脉疾病的阵发性严重缺血性二尖瓣反流
  • DOI:
    10.1016/s0735-1097(25)04438-9
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Davide Tomassoni;Timothy Yeung;Andrew W. Teh;Christopher Ford
  • 通讯作者:
    Christopher Ford
Impact of Investigational Microbiome Therapeutic SER-155 on Pathogen Domination: Initial Results from a Phase 1b Study in Adults Undergoing Allogeneic Hematopoietic Cell Transplantation (HCT)
  • DOI:
    10.1182/blood-2023-188885
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan U. Peled;Marcel R.M. van den Brink;Doris M. Ponce;Satyajit Kosuri;Nandita Khera;Zachariah DeFilipp;Bina Tejura;David I Lichter;Mary-Jane Lombardo;Meghan Chafee;Jennifer R Wortman;Timothy Straub;Emily Walsh;Augustus Ge;David Lyttle;Brooke Hasson;Christopher Ford;Lisa von Moltke;Matthew Henn
  • 通讯作者:
    Matthew Henn

Christopher Ford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Ford', 18)}}的其他基金

Beyond Luttinger Liquids-spin-charge separation at high excitation energies
超越卢廷格液体——高激发能量下的自旋电荷分离
  • 批准号:
    EP/J01690X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 45.95万
  • 项目类别:
    Research Grant

相似国自然基金

聚电解质自组装膜用于仿生设计层状复合材料的研究
  • 批准号:
    20306029
  • 批准年份:
    2003
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Next Generation Infectious Disease Diagnostics: Microfluidic-Free Gigapixel PCR with Self-Assembled Partitioning
下一代传染病诊断:具有自组装分区的无微流控千兆像素 PCR
  • 批准号:
    10682295
  • 财政年份:
    2023
  • 资助金额:
    $ 45.95万
  • 项目类别:
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 45.95万
  • 项目类别:
    Standard Grant
The surface-confined formation of self-assembled molecular networks and 2D polymers
自组装分子网络和二维聚合物的表面限制形成
  • 批准号:
    573355-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 45.95万
  • 项目类别:
    University Undergraduate Student Research Awards
Transformative Strategies for the Production of Hybrid Luminescent and Semiconducting Molecular, Polymeric, and Self-Assembled Materials
混合发光和半导体分子、聚合物和自组装材料生产的变革策略
  • 批准号:
    RGPIN-2018-04240
  • 财政年份:
    2022
  • 资助金额:
    $ 45.95万
  • 项目类别:
    Discovery Grants Program - Individual
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
  • 批准号:
    10196486
  • 财政年份:
    2021
  • 资助金额:
    $ 45.95万
  • 项目类别:
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
  • 批准号:
    10405097
  • 财政年份:
    2021
  • 资助金额:
    $ 45.95万
  • 项目类别:
Transformative Strategies for the Production of Hybrid Luminescent and Semiconducting Molecular, Polymeric, and Self-Assembled Materials
混合发光和半导体分子、聚合物和自组装材料生产的变革策略
  • 批准号:
    RGPIN-2018-04240
  • 财政年份:
    2021
  • 资助金额:
    $ 45.95万
  • 项目类别:
    Discovery Grants Program - Individual
Targeting Effector Immune cells to Cancer with Chemically Self-Assembled Nanorings (CSANs)
使用化学自组装纳米环 (CSAN) 将效应免疫细胞靶向癌症
  • 批准号:
    10600820
  • 财政年份:
    2020
  • 资助金额:
    $ 45.95万
  • 项目类别:
Transformative Strategies for the Production of Hybrid Luminescent and Semiconducting Molecular, Polymeric, and Self-Assembled Materials
混合发光和半导体分子、聚合物和自组装材料生产的变革策略
  • 批准号:
    RGPIN-2018-04240
  • 财政年份:
    2020
  • 资助金额:
    $ 45.95万
  • 项目类别:
    Discovery Grants Program - Individual
Targeting Effector Immune cells to Cancer with Chemically Self-Assembled Nanorings (CSANs)
使用化学自组装纳米环 (CSAN) 将效应免疫细胞靶向癌症
  • 批准号:
    10347346
  • 财政年份:
    2020
  • 资助金额:
    $ 45.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了