Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
基本信息
- 批准号:10405097
- 负责人:
- 金额:$ 20.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesionsAreaAtomic Force MicroscopyBiologicalCell LineCell membraneCell physiologyCell surfaceCellsCholesterolConfocal MicroscopyConsensusCytoskeletonDNADNA LibraryDyesElasticityEndocytosisEngineeringEntropyEquilibriumEquipmentErythrocytesExocytosisFluorescence MicroscopyFluorescence Resonance Energy TransferGeometryHeterogeneityKnowledgeLeadLibrariesLipidsLiposomesLiquid substanceMeasurementMeasuresMembraneMembrane PotentialsMethodsModelingModulusMolecular ProbesMonitorMorphogenesisNanostructuresOligonucleotidesOpticsPharmaceutical PreparationsPhysiologicalPlayPropertyRoleSecretory CellSignal TransductionSingle-Stranded DNASlideSpectrinStretchingSurfaceTertiary Protein StructureTestingThickThinnessTimeTransmembrane Domainbasecell motilitydesignfluorescence imagingimaging modalitylaser tweezermechanical propertiesmillisecondnovel strategiesoptical trapsresponseself assemblysensorsmall moleculesuccesstool
项目摘要
Project Summary
Many cellular processes, such as spreading, motility, division, and morphogenesis generate membrane tension
gradients. Such gradients drive membrane flows, which relax the initial gradients. In addition, quiescent cells
maintain a constant surface area and a relatively stable membrane tension, 𝜎, by balancing the rates at which
membrane is added (via exocytosis) and removed (via endocytosis) to and from the cell surface. Changes in 𝜎
have been proposed to provide rapid, long-range cellular signaling. Yet, how the plasma membrane flows and
how gradients of 𝜎 relax are very poorly understood, with estimates of membrane tension equilibration times in
cells ranging from milliseconds to tens of minutes. One of the major reasons underlying this dearth of
knowledge is the lack of suitable methods for measuring membrane tension changes in live cells. In the past,
two classes of membrane tension measurements have been developed, but both have severe limitations. The
first class is based on changes in optical properties of small molecules. These sensors probe local properties of
cell membranes. Due to large heterogeneities in biological membranes, and potential interactions of the probes
with various membrane components, correlating 𝜎 with the local properties probed by these small molecule
sensors is not straightforward. The second approach relies on pulling a thin membrane tether from the cell
surface and measuring the tether force using optical trapping or atomic force microscopy. The tether force is
related to the in-line membrane tension, membrane bending modulus, and the adhesion energy between the
plasma membrane and the cytoskeleton. This approach allows a "true" membrane tension to be measured, but
requires specialized equipment, is very difficult to implement when cells undergo physiological changes when
tension gradients are most likely to arise, and only provides a local measurement. Thus, despite the urgent
need, there are no direct and convenient probes to quantify membrane tension gradients during cellular
processes. We propose to close this gap by developing a radically new class of membrane tension
sensors based on DNA-based self-assembly of an elastic network over cell surfaces, called
LEMONADE, for Lego-like membrane tension analyzer based on self-assembled DNA elastic networks.
We aim to 1) develop a library of DNA tiles and connector-springs that self-assemble on cell
surfaces into a network with tunable properties. A variety of DNA tile and connector-spring designs
will be generated and optimized for self-assembly on membranes. The connectivity and elasticity of the
network will be tunable by substitution of components with different properties. Expansion or contraction of
the network due to changes in membrane area will be detected using FRET dye pairs located on the connector-
spring modules. 2) Characterize the response of the DNA-based membrane tension sensor to
controlled membrane tension perturbations in various cells. We will use giant liposomes, red blood
cells, and adhering cells to calibrate the response of LEMONADE to controlled changes in membrane tension.
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Actuating tension-loaded DNA clamps drives membrane tubulation.
- DOI:10.1126/sciadv.add1830
- 发表时间:2022-10-14
- 期刊:
- 影响因子:13.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERDEM KARATEKIN其他文献
ERDEM KARATEKIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERDEM KARATEKIN', 18)}}的其他基金
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
- 批准号:
10196486 - 财政年份:2021
- 资助金额:
$ 20.94万 - 项目类别:
Dynamics of membrane tension and synaptic vesicle recycling
膜张力和突触小泡回收的动力学
- 批准号:
10364698 - 财政年份:2021
- 资助金额:
$ 20.94万 - 项目类别:
Dynamics of membrane tension and synaptic vesicle recycling
膜张力和突触小泡回收的动力学
- 批准号:
10594954 - 财政年份:2021
- 资助金额:
$ 20.94万 - 项目类别:
Mechanisms of the calcium-triggered neurotransmitter release machinery in hair cells
毛细胞中钙触发神经递质释放机制的机制
- 批准号:
10424526 - 财政年份:2020
- 资助金额:
$ 20.94万 - 项目类别:
Mechanisms of the calcium-triggered neurotransmitter release machinery in hair cells
毛细胞中钙触发神经递质释放机制的机制
- 批准号:
10197098 - 财政年份:2020
- 资助金额:
$ 20.94万 - 项目类别:
Mechanisms of the calcium-triggered neurotransmitter release machinery in hair cells
毛细胞中钙触发神经递质释放机制的机制
- 批准号:
10636938 - 财政年份:2020
- 资助金额:
$ 20.94万 - 项目类别:
Dynamics of membrane tension and synaptic vesicle recycling
膜张力和突触小泡回收的动力学
- 批准号:
9808543 - 财政年份:2019
- 资助金额:
$ 20.94万 - 项目类别:
Nucleation and dynamics of exocytotic fusion pores
胞吐融合孔的成核和动力学
- 批准号:
8615066 - 财政年份:2014
- 资助金额:
$ 20.94万 - 项目类别:
Nucleation and dynamics of exocytotic fusion pores
胞吐融合孔的成核和动力学
- 批准号:
10376228 - 财政年份:2014
- 资助金额:
$ 20.94万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 20.94万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 20.94万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 20.94万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 20.94万 - 项目类别: