Calabi-Yau Pairs and Mirror Symmetry for Fano Varieties
Fano 品种的 Calabi-Yau 对和镜像对称性
基本信息
- 批准号:EP/P029949/1
- 负责人:
- 金额:$ 11.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry has for many decades been one of the core disciplines of mathematics, and the subject remains as vital today as it was 150 years ago as a source of new ideas and important problems. The basic objects studied in algebraic geometry are geometric shapes defined by polynomial equations in an ambient projective space. The Minimal Model Program (MMP) shows that, up to surgery, these shapes can be constructed out of "building blocks" of pure geometric type, and these have:(1) positive curvature (Fano varieties),(2) zero curvature (Calabi-Yau varieties),(3) negative curvature (varieties of general type).These pure geometric types correspond intuitively to the geometry of the sphere, of the Euclidian plane and of the hyperbolic plane. The geometry of each pure type has distinct features and properties: presence of rational curves, behaviour in families, surgery operations between the variety and other varieties.. A very useful technique in recent developments has been to consider perturbations of these pure geometric types. The perturbed geometric types are defined for pairs of a variety and some lower dimensional shape lying on it (for example a slice of the original shape). The varieties of perturbed pure geometric types are called log Fano, log Calabi-Yau, and of log general type. They share many of the features of the associated pure types. The geometry of pairs is very rich: a pair can have a certain perturbed type (log Calabi-Yau for example) while its underlying variety has a different pure geometric type (Fano in our example). The geometry of the pair then blends features of Calabi-Yau and Fano geometries. My research concentrates on varieties and pairs whose geometry or perturbed geometry is of Fano or Calabi-Yau type. These are important in mathematical physics: according to string theory, the fundamental objects in physics are strings rather than point-like particles. These strings move in a background that, in addition to space and time, has extra hidden dimensions curled up in a background variety which is Fano or Calabi-Yau (depending on the version of the theory). Explicitly, this proposal is concerned with the geometry of log Calabi-Yau and Fano shapes. The first project studies transformations of log Calabi-Yau shapes that preserve an additional invariant. The most interesting case is that of transformations between log Calabi-Yau shapes that are made of a Fano shape and a Calabi-Yau slice of it. The transformations are then required to preserve the volume of the Calabi-Yau slice. The second project focusses explicitly on mirror symmetry for Fano varieties. Mirror symmetry is a duality that occurs when two mathematically different background geometries produce the same physics; the two geometries are then called mirror dual. Conjecturally, Fano shapes are mirror symmetric to so called cluster varieties. Cluster varieties are families of log Calabi-Yau shapes that can be glued by the transformations studied in the first project. The proposed research will apply techniques and ideas from algebraic geometry and from the Minimal Model Program to deepen our understanding of cluster varieties and of log Calabi-Yau geometries. In turn, the results of this work will provide a new angle on the geometry of Fano shapes.
几十年来,代数几何一直是数学的核心学科之一,这门学科在今天仍然像150年前一样重要,是新思想和重要问题的来源。代数几何研究的基本对象是由周围射影空间中的多项式方程定义的几何形状。最小模型程序(MMP)表明,直到外科手术,这些形状可以由纯几何类型的“构建块”构建,并且这些具有:(1)正曲率(Fano变种),(2)零曲率(Calabi-Yau变种),(3)负曲率(一般类型的变种)。这些纯几何类型直观地对应于球面、欧几里得平面和双曲平面的几何。每个纯类型的几何有不同的特点和属性:存在合理的曲线,行为的家庭,外科手术之间的品种和其他品种。在最近的发展中,一个非常有用的技术是考虑这些纯几何类型的扰动。扰动的几何类型被定义为一个品种和一些低维形状躺在它(例如一个切片的原始形状)的对。扰动纯几何型的变种称为对数Fano型、对数Calabi-Yau型和对数一般型。它们共享相关纯类型的许多特性。偶的几何是非常丰富的:一个偶可以有一个特定的扰动类型(例如对数卡-丘),而它的基础变体有一个不同的纯几何类型(在我们的例子中是法诺)。然后,这对的几何形状融合了Calabi-Yau和Fano几何形状的特征。我的研究集中在品种和对的几何或扰动几何是Fano或Calabi-Yau型。这些在数学物理学中很重要:根据弦理论,物理学中的基本对象是弦而不是点状粒子。这些弦在一个背景中运动,除了空间和时间之外,还有额外的隐藏维蜷缩在一个背景变体中,这个变体是法诺或卡拉比-丘(取决于理论的版本)。解释,这个建议是有关的几何形状的日志卡-丘和法诺形状。第一个项目研究保持额外不变的对数卡-丘形状的变换。最有趣的情况是对数卡-丘形状之间的变换,对数卡-丘形状由Fano形状和它的卡-丘切片组成,然后要求变换保持卡-丘切片的体积。第二个项目的重点是明确的镜像对称的法诺品种。镜像对称(英语:Mirror symmetry)是一种对偶,当两个数学上不同的背景几何产生相同的物理时,这两个几何就被称为镜像对偶。从理论上讲,Fano形状与所谓的簇簇变体是镜像对称的。簇的品种是家庭的日志卡-丘形状,可以胶合的第一个项目中研究的转换。拟议的研究将应用技术和思想,从代数几何和最小模型程序,以加深我们的理解集群品种和日志卡-丘几何。反过来,这项工作的结果将提供一个新的角度对Fano形状的几何形状。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some Examples of Calabi–Yau Pairs with Maximal Intersection and No Toric Model
具有最大交集且无环面模型的卡拉比-丘对的一些示例
- DOI:10.1007/978-3-030-37114-2_5
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Anne
- 通讯作者:Anne
Birational geometry and mirror symmetry of Calabi-Yau pairs
卡拉比-丘对的双有理几何和镜像对称性
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kaloghiros A-S
- 通讯作者:Kaloghiros A-S
On toric geometry and K-stability of Fano varieties
关于 Fano 簇的复曲面几何和 K 稳定性
- DOI:10.1090/btran/82
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kaloghiros A
- 通讯作者:Kaloghiros A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne-Sophie Kaloghiros其他文献
Anne-Sophie Kaloghiros的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne-Sophie Kaloghiros', 18)}}的其他基金
The Calabi problem for smooth Fano threefolds
平滑法诺三重的卡拉比问题
- 批准号:
EP/V056689/1 - 财政年份:2022
- 资助金额:
$ 11.7万 - 项目类别:
Research Grant
Birational Geometry and Topology of singular Fano 3-folds.
奇异 Fano 3 倍的双有理几何和拓扑。
- 批准号:
EP/H028811/2 - 财政年份:2012
- 资助金额:
$ 11.7万 - 项目类别:
Fellowship
Birational Geometry and Topology of singular Fano 3-folds.
奇异 Fano 3 倍的双有理几何和拓扑。
- 批准号:
EP/H028811/1 - 财政年份:2011
- 资助金额:
$ 11.7万 - 项目类别:
Fellowship
相似国自然基金
分次斜 Calabi-Yau 代数的研究
- 批准号:Y24A010046
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于退化Calabi-Yau流形的研究
- 批准号:12301059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于黎曼流形上精确 Li-Yau 型梯度估计的研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
Calabi-Yau代数的同调和表示与Poisson代数的同调
- 批准号:11901396
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
模型结构、三角范畴与Calabi-Yau代数
- 批准号:11871125
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
Poincaré-Mok-Yau 型典则 Kähler 度量的存在性
- 批准号:11701426
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
镜对称及双有理代数几何背景下的高维 Calabi-Yau 簇
- 批准号:11601015
- 批准年份:2016
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
箭图代数与Calabi-Yau范畴
- 批准号:11671230
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
Calabi-Yau范畴上的非交换几何结构
- 批准号:11671281
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
单位球面中极小超曲面的第一特征值的Yau的猜想
- 批准号:11501500
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Studies of five-dimensional supersymmetric gauge theories from web diagrams which characterize Calabi-Yau spaces
从表征 Calabi-Yau 空间的网络图研究五维超对称规范理论
- 批准号:
23K03396 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomological Hall Algebras of Calabi-Yau 3-folds
Calabi-Yau 3 次上同调霍尔代数
- 批准号:
EP/X040674/1 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Research Grant
Degenerations of Fano and Calabi-Yau varieties and its applications
Fano和Calabi-Yau品种的退化及其应用
- 批准号:
23K03032 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
- 批准号:
23K03066 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized Calabi-Yau Geometry
广义卡拉比-丘几何
- 批准号:
559503-2021 - 财政年份:2022
- 资助金额:
$ 11.7万 - 项目类别:
Postgraduate Scholarships - Doctoral
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2022
- 资助金额:
$ 11.7万 - 项目类别:
Discovery Grants Program - Individual
強擬凸領域上のCheng-Yau計量と境界上のCR幾何の研究
强赝凸区域Cheng-Yau度量及边界CR几何研究
- 批准号:
22K13922 - 财政年份:2022
- 资助金额:
$ 11.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamics on Calabi--Yau and abelian varieties
卡拉比动态--丘和阿贝尔变种
- 批准号:
EP/W026554/1 - 财政年份:2022
- 资助金额:
$ 11.7万 - 项目类别:
Research Grant
Calabi-Yau Mirror Symmetry
卡拉比丘镜像对称
- 批准号:
574294-2022 - 财政年份:2022
- 资助金额:
$ 11.7万 - 项目类别:
University Undergraduate Student Research Awards
Representation Theory, Calabi-Yau Manifolds, and Mirror Symmetry
表示论、卡拉比-丘流形和镜像对称
- 批准号:
2227199 - 财政年份:2022
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant