Novel Porous-Transport-Layers for Fuel Cells and Clean Energy Applications

用于燃料电池和清洁能源应用的新型多孔传输层

基本信息

  • 批准号:
    EP/P03098X/1
  • 负责人:
  • 金额:
    $ 12.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Porous transport layers or gas-diffusion layers (GDLs) are the key component of polymer electrolyte fuel cells (PEFCs), which are made by weaving carbon fibres into a carbon cloth or by pressing carbon fibres together into a carbon paper and then rendered wet-proof by fully saturating the pores with a hydrophobic emulsion. PEFCs produce electric power by reacting hydrogen with oxygen with water as its only by-product, making them a clean power solution for next-generation vehicles and drones to reduce greenhouse gas emissions. However, GDL's poor durability, as they are prone to liquid-water flooding, and the cost of fuel-cell stacks hinder their widespread adoption in zero-emission vehicles and drones. Further cost reduction for making fuel-cell stack commercially viable requires cost-effective and durable GDLs. The proposed research programme introduces innovative concepts to the design and development of novel GDLs for PEFCs and related clean energy applications using state-of-the-art additive manufacturing techniques (3D printing), developing experimental protocols for characterising GDLs, and providing a deeper practical understanding of water-droplet growth and detachment from their surfaces. This project aims to combine experimental characterisation and diagnostics with advanced mathematical modelling to analyse water transport through newly designed GDLs and to optimise their properties for better water removal and higher durability than convectional GDLs. The key work will include the following areas: (i) design and fabrication of GDLs with selective wetting properties and surface structures using additive manufacturing techniques; (ii) characterisation of GDL's surface morphology, roughness, adhesion force, and breakthrough pressure and analysis of water-droplet growth and detachment from GDL; (iii) development of a computational model to simulate interfacial interactions between water-droplets and GDL surface; (iv) modification of an existing PEFC model and incorporation of the interfacial model data to optimise GDLs; (v) validation of GDL's real life performances using in-situ fuel cell performance testing. The novel GDLs will reduce the cost of fuel-cell vehicles and drones by improving the cell durability and performance, and reducing manufacturing time and material waste during the mass production of fuel-cell components. As many of the known fuel cell technologies have been developed in North America, Asia and Germany and acquired in the UK by license agreement, the proposed project will provide a unique opportunity for the UK be the leader in tailored GDLs as well as be the precursor in the development of next-generation fuel cells for vehicle and drone applications.
多孔传输层或气体扩散层(GDL)是聚合物电解质燃料电池(PEFC)的关键组成部分,其通过将碳纤维编织成碳布或通过将碳纤维压在一起制成碳纸,然后通过用疏水乳液完全饱和孔隙来提供防潮性。PEFC通过氢与氧反应产生电力,水是其唯一的副产品,使其成为下一代汽车和无人机的清洁动力解决方案,以减少温室气体排放。然而,GDL的耐用性较差,因为它们容易发生液态水泛滥,而且燃料电池堆的成本阻碍了它们在零排放汽车和无人机中的广泛采用。为了使燃料电池堆在商业上可行,进一步降低成本需要具有成本效益和耐用的GDL。拟议的研究计划将创新概念引入到PEFC和相关清洁能源应用的新型GDL的设计和开发中,使用最先进的增材制造技术(3D打印),开发用于表征GDL的实验方案,并提供更深入的实践了解水滴生长和从其表面分离。该项目旨在将联合收割机实验表征和诊断与先进的数学建模相结合,以分析通过新设计的GDL的水传输,并优化其性能,以实现比常规GDL更好的除水和更高的耐久性。重点工作将包括以下几个方面:(i)使用增材制造技术设计和制造具有选择性润湿特性和表面结构的GDL;(ii)GDL表面形貌、粗糙度、粘附力和突破压力的表征以及水滴生长和GDL脱离的分析;(iii)GDL表面的表面形貌、粗糙度、粘附力和突破压力的表征。(iii)发展一个计算模型,以模拟水滴与GDL表面之间的界面相互作用;(iv)修改现有的PEFC模型并结合界面模型数据以优化GDL;(v)使用原位燃料电池性能测试来验证GDL的真实的寿命性能。新型GDL将通过提高电池耐用性和性能,减少燃料电池组件大规模生产过程中的制造时间和材料浪费,降低燃料电池车辆和无人机的成本。由于许多已知的燃料电池技术已经在北美,亚洲和德国开发,并通过许可协议在英国获得,拟议的项目将为英国提供一个独特的机会,成为定制GDL的领导者,并成为下一代燃料电池的先驱,用于车辆和无人机应用。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
(Invited, Digital Presentation) Tuning Gas-Diffusion-Layer Surface Wettability for Polymer Electrolyte Fuel Cells
(特邀,数字演示)调整聚合物电解质燃料电池的气体扩散层表面润湿性
  • DOI:
    10.1149/ma2022-01381709mtgabs
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Das P
  • 通讯作者:
    Das P
Tuning Gas-Diffusion-Layer Surface Wettability for Polymer Electrolyte Fuel Cells
调节聚合物电解质燃料电池的气体扩散层表面润湿性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Das PK
  • 通讯作者:
    Das PK
Tuning GDL/Flow Channel Interface for Better Removal of Liquid Water and Improving the Performance of PEMFCs
调整 GDL/流道界面以更好地去除液态水并提高 PEMFC 的性能
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thumbarathy SD
  • 通讯作者:
    Thumbarathy SD
Fabrication of Super Hydrophobic Gas Diffusion Layers
超疏水气体扩散层的制备
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thumbarathy DS
  • 通讯作者:
    Thumbarathy DS
Fabrication and Characterization of Tuneable Flow-Channel/Gas-Diffusion-Layer Interface for Polymer Electrolyte Fuel Cells
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prodip Das其他文献

Attrition in specialty training: What causes surgical specialty trainees to leave?
  • DOI:
    10.1016/j.ijsu.2014.08.143
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Hampton;Robert Greenhalgh;Amin Elmubarak;Prodip Das
  • 通讯作者:
    Prodip Das

Prodip Das的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Multiscale Bacterial Transport in Porous Media
职业:多孔介质中的多尺度细菌传输
  • 批准号:
    2340501
  • 财政年份:
    2024
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Continuing Grant
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
  • 批准号:
    2329250
  • 财政年份:
    2024
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Standard Grant
CAREER: Aerosol transport in well-defined periodic porous metamaterials
职业:明确的周期性多孔超材料中的气溶胶传输
  • 批准号:
    2237430
  • 财政年份:
    2023
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Comprehensive Theoretical Framework to Predict Multiscale and Multicomponent Electrolyte Transport in Porous Media
职业:建立一个预测多孔介质中多尺度和多组分电解质传输的综合理论框架
  • 批准号:
    2238412
  • 财政年份:
    2023
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Continuing Grant
ERI: Impact of pore-scale heterogeneity on precipitation and transport in porous media
ERI:孔隙尺度非均质性对多孔介质中降水和传输的影响
  • 批准号:
    2301243
  • 财政年份:
    2023
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Standard Grant
CDS&E: Data-driven modeling and analyses of CO2 transport in porous media
CDS
  • 批准号:
    2245484
  • 财政年份:
    2023
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Standard Grant
Multiscale modelling of fluid–particle transport in porous media
多孔介质中流体颗粒输运的多尺度建模
  • 批准号:
    DE220100763
  • 财政年份:
    2022
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Discovery Early Career Researcher Award
A Transport-Rate-Limited Numerical Model for Simulating Cell Growth and Biodegradation Rates in Porous Soil and Rock
模拟多孔土壤和岩石中细胞生长和生物降解速率的传输速率限制数值模型
  • 批准号:
    RGPIN-2020-03866
  • 财政年份:
    2022
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a Novel Niobium-based Porous Transport Layer for Proton Exchange Membrane Water Electrolyser Applications
开发用于质子交换膜水电解槽应用的新型铌基多孔传输层
  • 批准号:
    571713-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Alliance Grants
Research Initiation Award: A Boltzmann Model for Multi-Scale and Multi-Physics/Chemistry Transport Phenomena in Porous Media
研究启动奖:多孔介质中多尺度和多物理/化学输运现象的玻尔兹曼模型
  • 批准号:
    2200515
  • 财政年份:
    2022
  • 资助金额:
    $ 12.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了