MUltiphase Flow-induced Fluid-flexible structure InteractioN in Subsea applications (MUFFINS)

海底应用中的多相流诱导流体-柔性结构相互作用 (松饼)

基本信息

  • 批准号:
    EP/P033148/1
  • 负责人:
  • 金额:
    $ 73.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The MUFFINS project assembles a multidisciplinary team from Newcastle University, Imperial College London, University of Glasgow, industrial partners including BP, Chevron, TOTAL and Forsys Subsea, who are members of the Transient Multiphase Flow and Flow Assurance Consortium, Wood Group, Xodus Group, Orcina and TNO in the Netherlands, and an academic partner, the National University of Singapore, to develop the next generation of pioneering technologies and cost-efficient tools for the safe, reliable and real-life designs of subsea systems (pipelines, risers, jumpers and manifolds) transporting multiphase hydrocarbon liquid-gas flows. This world-leading academia-industry collaboration will be the first of its kind to strengthen the UK international competitiveness in multiphase flow designs for offshore oil and gas applications. The proposed framework will specifically address fundamental and practical challenges in areas of internal multiphase flow-induced vibration (MFIV), in combination with external flow vortex-induced vibration (VIV), whose fatigue damage effects due to complicated fluid-structure interaction mechanisms can be catastrophic and result in costly production downtime. From a practical viewpoint, liquid-gas slug flows induced by the pipe geometry, seabed topography or thermo-physic-hydrodynamic instability, are common and problematical. Such flows have a highly complex hydrodynamic nature as the different mechanical properties of the deformable and compressible phases cause spatial and temporal variability in the combination and interaction of the interfaces. Subsea layout architecture, operational lifetime and environmental conditions can all affect the flow-pipe interaction patterns. Nevertheless, reliable practical guidelines and systematic frameworks for the response, stress and fatigue assessment of subsea structures undergoing MFIV are lacking. Greater complexities and unknowns arise when designing these structures subject to combined MFIV-VIV. Through an integrated programme combining modelling, simulation and experiment, high-fidelity three-dimensional computational fluid dynamics will be performed and a hierarchy of innovative and cost-efficient reduced-order models will be developed to capture vital multiple MFIV and VIV effects, providing significant insights into detailed flow features and fluid-structure coupling phenomena. Validation, verification, uncertainty and reliability analyses will be carried out by comparing numerical results with experimental tests and industrial data to improve confidence in identifying the likelihood of fatigue failure and safety risks. Computationally-efficient tools and open-source codes will be advanced and utilised by industry and worldwide researchers. The project will minimise uncertainties in MFIV-VIV predictions associated with multi-scale multi-physics fluid-elastic solid interactions, ultimately delivering improved design optimisation and control of the most efficient multiphase flow features. The UK oil and gas industry has been at the heart of the UK prosperity for five decades but has faced significant challenges recently. In October 2016, the UK Government founded the Oil & Gas Authority to safeguard collaboration, maximise resource recovery from the UK Continental Shelf, and maintain the UK competitiveness with future investments. In alignment with these strategies, the MUFFINS project will deliver the maximum benefits to and security of global oil and gas energy by means of cutting-edge technologies, cost-efficient tools and recommended guidelines to significantly improve the integrity, reliability and safety of subsea systems transporting multiphase flows. The project will upskill the next-generation engineers and scientists in the oil and gas sector. The technical know-how and deliverables will lead to a transformative improvement in structural designs and reduction of environmental impacts, operational and maintenance costs.
MUFFINS项目汇集了来自纽卡斯尔大学、伦敦帝国理工学院、格拉斯哥大学的多学科团队,包括BP、雪佛龙、道达尔和Forsys Subsea在内的工业合作伙伴,他们是瞬态多相流和流量保证联盟的成员,伍德集团、Xodus集团、荷兰的Orcina和TNO,以及学术合作伙伴新加坡国立大学。开发下一代先进技术和具有成本效益的工具,用于安全、可靠和实际设计输送多相碳氢化合物液-气流的海底系统(管道、管线、跨接管和管汇)。这一世界领先的海洋石油行业合作将是第一次加强英国在海上石油和天然气应用多相流设计方面的国际竞争力。拟议的框架将专门解决内部多相流致振动(MFIV)领域的基本和实际挑战,与外部流涡致振动(VIV)相结合,由于复杂的流体-结构相互作用机制,其疲劳损伤效应可能是灾难性的,并导致昂贵的生产停机时间。从实际应用的角度来看,由管道几何形状、海底地形或热-水-流体动力不稳定性引起的液-气段塞流是常见的和有问题的。这种流动具有高度复杂的流体动力学性质,因为可变形相和可压缩相的不同机械性质导致界面的组合和相互作用的空间和时间变化。水下布置结构、运行寿命和环境条件都会影响流管相互作用模式。然而,缺乏可靠的实用指南和系统框架的响应,应力和疲劳评估的海底结构进行MFIV。当设计这些结构时,会出现更大的复杂性和未知性,这些结构会受到组合MFIV-VIV的影响。通过结合建模、模拟和实验的综合方案,将进行高保真三维计算流体动力学,并将开发一系列创新和具有成本效益的降阶模型,以捕捉重要的多重MFIV和VIV效应,为详细的流动特征和流体-结构耦合现象提供重要的见解。将通过将数值结果与实验测试和工业数据进行比较来进行验证、验证、不确定性和可靠性分析,以提高识别疲劳失效和安全风险的可能性的信心。计算效率高的工具和开源代码将被行业和全球研究人员所利用。该项目将最大限度地减少与多尺度多物理场流体-弹性固体相互作用相关的MFIV-VIV预测的不确定性,最终实现最有效的多相流特性的改进设计优化和控制。50年来,英国石油和天然气行业一直是英国繁荣的核心,但最近面临着重大挑战。2016年10月,英国政府成立了石油和天然气管理局,以保障合作,最大限度地提高英国大陆架的资源回收率,并通过未来的投资保持英国的竞争力。根据这些战略,MUFFINS项目将通过尖端技术,具有成本效益的工具和推荐的指导方针,为全球石油和天然气能源提供最大的利益和安全性,以显着提高输送多相流的海底系统的完整性,可靠性和安全性。该项目将提高石油和天然气部门的下一代工程师和科学家的技能。技术知识和交付成果将带来结构设计的变革性改进,并减少环境影响、运营和维护成本。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prediction model for multidirectional vortex-induced vibrations of catenary riser in convex/concave and perpendicular flows
  • DOI:
    10.1016/j.jfluidstructs.2022.103826
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    B. Ma;N. Srinil
  • 通讯作者:
    B. Ma;N. Srinil
Slug Flow-Induced Oscillation in Subsea Catenary Riser Experiencing VIV
经历 VIV 的海底悬链线立管中的段塞流引起的振荡
  • DOI:
    10.1115/omae2018-77298
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Safrendyo S
  • 通讯作者:
    Safrendyo S
Dynamic Characteristics of Deep-Water Risers Carrying Multiphase Flows
承载多相流的深水立管动态特性
  • DOI:
    10.1115/omae2018-77381
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ma B
  • 通讯作者:
    Ma B
Experiment on the Effect of Superficial Gas-Liquid Velocities on Slug Flow-Induced Vibration in an Inclined Sagged Riser
  • DOI:
    10.1115/omae2020-18034
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Ma;N. Srinil;Hongjun Zhu;Yue Gao
  • 通讯作者:
    B. Ma;N. Srinil;Hongjun Zhu;Yue Gao
Prediction of multiphase flows with sharp interfaces using anisotropic mesh optimisation
使用各向异性网格优化预测具有尖锐界面的多相流
  • DOI:
    10.1016/j.advengsoft.2021.103044
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Obeysekara A
  • 通讯作者:
    Obeysekara A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Narakorn Srinil其他文献

A review of two-degree-of-freedom vortex-induced vibrations with hydrokinetic energy harvesting applications
具有流体动能收集应用的两自由度涡激振动综述
  • DOI:
    10.1016/j.oceaneng.2025.120376
  • 发表时间:
    2025-03-30
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Mohammadreza Rashki;Alireza Mojtahedi;Mohammad Ali Lotfollahi-Yaghin;Vahid Tamimi;Mehran Dadashzadeh;Paulo Rosa Santos;Michael M. Bernitsas;Narakorn Srinil
  • 通讯作者:
    Narakorn Srinil
On wake modulation and interaction features of a pair of dual-step circular cylinders in side-by-side arrangements
一对并排双台阶圆柱体的尾流调制和相互作用特征
  • DOI:
    10.1063/5.0063885
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yan Yuhao;Chunning Ji;Narakorn Srinil
  • 通讯作者:
    Narakorn Srinil
A surrogate model for estimating uncertainty in marine riser fatigue damage resulting from vortex-induced vibration
  • DOI:
    10.1016/j.engstruct.2021.113796
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    6.400
  • 作者:
    HyeongUk Lim;Lance Manuel;Ying Min Low;Narakorn Srinil
  • 通讯作者:
    Narakorn Srinil
Direct Numerical Simulations of Horizontally Oblique Flows Past Three-Dimensional Circular Cylinder Near a Plane Boundary
平面边界附近三维圆柱体水平斜流直接数值模拟
Flow-induced transverse vibration of an elliptical cylinder with different aspect ratios
不同长径比椭圆柱的流致横向振动
  • DOI:
    10.1016/j.oceaneng.2020.107831
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Kushwaha Vijay;Narakorn Srinil;Hongbo Zhu;Yan Bao;Dai Zhou;Zhaolong Han
  • 通讯作者:
    Zhaolong Han

Narakorn Srinil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4D Flow MRI 技术联合HA/cRGD-GD-LPs对比剂增强扫描诊断肝纤维化分期的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4 D-Flow MRI评估吻合口大小对动静脉瘘的血流动力学以及临床预后的影响
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
构建4D-Flow-CFD仿真模型定量评估肝硬化门静脉血流动力学
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4D-FLOW MRI实现特发性颅内压增高患者静脉窦无创测压和血流动力学分析
  • 批准号:
    82301457
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
结合4D flow的多模态心脏磁共振成像在肥厚型心肌病中的应用研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
驻高海拔地区铁路建设工程项目员工的Flow体验、国家认同与心理韧性:积极环境心理学视角
  • 批准号:
    72271205
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
基于Flow-through流场的双离子嵌入型电容去离子及其动力学调控研究
  • 批准号:
    52009057
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
  • 批准号:
    82071991
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
  • 批准号:
    81801139
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidation of the inhibitory mechanism for chewing-induced brain blood flow in patients with jaw deformity.
阐明颌畸形患者咀嚼引起的脑血流的抑制机制。
  • 批准号:
    23K09449
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Flow-Induced Structures in Lyotropic Chromonic Liquid Crystals
溶致发色液晶中的流动诱导结构
  • 批准号:
    2245163
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
    Standard Grant
High-throughput Flow Culture of 3D Human PKD Models for Therapeutic Screening
用于治疗筛选的 3D 人体 PKD 模型的高通量流式培养
  • 批准号:
    10649222
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
Flow, Fatty Acid Biosynthesis, and Hematopoiesis
流动、脂肪酸生物合成和造血
  • 批准号:
    10868960
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
Flow property and flow-induced structure of micellar solutions in a continuously arranged cavity flow
连续排列空腔流中胶束溶液的流动特性和流动诱导结构
  • 批准号:
    23K03654
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CDS&E: Multiscale Computational Modeling of Flow-Induced Mechanical Deformation via Nonlocal Formulations
CDS
  • 批准号:
    2245343
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
    Standard Grant
Predicting flood-induced flow and sediment dynamics using data-driven physics-informed models
使用数据驱动的物理模型预测洪水引起的流量和沉积物动力学
  • 批准号:
    2233986
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
    Standard Grant
Numerical analysis of collective motion and flow-induced structure in dispersion system of biological particles with taxis
滑行生物颗粒分散体系中集体运动和流致结构的数值分析
  • 批准号:
    23K03667
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the effective flow-induced noise reduction technique by controlling the acoustic transmission loss at the fluid-solid interface
通过控制流固界面声传输损失的有效流致降噪技术
  • 批准号:
    23K03747
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Blood Flow Scope Evaluation and Development of a Novel Treatment for Cooling Therapy for Chemotherapy-Induced Peripheral Neuropathy
血流范围评估和化疗引起的周围神经病变冷却疗法新疗法的开发
  • 批准号:
    23K14721
  • 财政年份:
    2023
  • 资助金额:
    $ 73.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了