Plasma and Fluidic Assisted Electrocatalysis for Chemical Storage of Renewable Electricity

用于可再生电力化学储存的等离子体和流体辅助电催化

基本信息

  • 批准号:
    EP/R000409/1
  • 负责人:
  • 金额:
    $ 25.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Our ambition is to couple electrocatalysis, plasma catalysis and fluidic oscillation to create a highly efficient energy conversion device and a paradigm shift in the ability to store renewable energy in chemical form.The reduction in carbon emissions required for a sustainable future, and the resultant necessary decarbonisation of energy generation, inevitably lead to an increased focus on renewable energy sources. The natural intermittency of renewable electricity, such as wind and solar, mean that other technologies, such as energy storage, must play an increasingly fundamental role by smoothing the natural fluctuations in electricity production. Reversible Solid Oxide Cells (SOCs) are widely seen as a leading technology for future clean power generation, chemicals production and energy storage. Renewable electricity can be utilised directly in electrolysis mode to reduce CO2 and/or H2O which can then be further reacted to produce a myriad of hydrocarbon related products. In times of low or no renewable electricity generation, the SOC can be run in reverse, in fuel cell mode, to produce electricity. There are currently no subsidy-free, commercially viable SOC companies anywhere in the world. Whilst single SOCs are easy to operate on a small scale in the laboratory, larger systems have found it difficult to compete with alternative energy technologies on cost, performance and durability. In particular, it is necessary to develop methods for lifetime extension of SOCs, minimisation of losses such as concentration polarisation, and faster chemical activation of CO2, using energy inputs close to the thermodynamic minimum. Non-thermal plasma catalysis has shown great potential for CO2 reduction in its own right due to the promotion of strongly endothermic reactions with low activation energy, so that little or no excess energy is required from the plasma for activation and thermodynamic efficiencies are high. The challenges are to dynamically control the reaction and to achieve high conversion. Fluidic oscillation can disrupt boundary layer formation and therefore minimise, or remove completely, concentration polarisation. Fluidic oscillation has never before been coupled to an SOC.We propose a novel, hybrid, plasma and fluidic assisted electrolysis system, in which the plasma is used to radically improve the kinetics and energy efficiency of CO2 dissociation. The system would be designed to reduce concentration polarisation, a cause of lowered mass transfer, at the electrode through fluidic oscillation to disrupt the gas boundary layer and by use of the ionic wind formed in plasmas (the gas flow generated by movement of ions in the plasma). Ultimately the aim is to create a completely new design of chemical reactor for strongly endothermic reactions. A significant reduction in overall energy use and cell failure rate will be achieved as a result of this feasibility research.
我们的目标是将电催化、等离子体催化和流体振荡结合起来,创造出一种高效的能量转换装置,并改变以化学形式储存可再生能源的能力。可持续未来所需的碳排放减少,以及随之而来的能源生产的必要脱碳,不可避免地会导致对可再生能源的日益关注。风能和太阳能等可再生电力的自然波动性意味着,储能等其他技术必须通过平滑电力生产的自然波动发挥越来越重要的作用。可逆固体氧化物电池(SOC)被广泛认为是未来清洁发电,化学品生产和能源储存的领先技术。可再生电力可以直接用于电解模式以减少CO2和/或H2O,然后可以进一步反应以产生无数的烃相关产品。在低或没有可再生发电的时候,SOC可以在燃料电池模式下反向运行以产生电力。目前,世界上任何地方都没有无补贴、商业上可行的SOC公司。虽然单一SOC易于在实验室中小规模操作,但大型系统发现难以在成本,性能和耐用性方面与替代能源技术竞争。特别是,它是必要的开发方法寿命延长的SOC,最大限度地减少损失,如浓度极化,和更快的化学活化的CO2,使用接近热力学最小值的能量输入。非热等离子体催化由于促进了具有低活化能的强吸热反应而显示出其自身对于CO2还原的巨大潜力,使得从等离子体需要很少或不需要多余的能量用于活化并且热力学效率高。挑战在于动态控制反应并实现高转化率。射流振荡可以破坏边界层的形成,从而最大限度地减少或完全消除浓度极化。我们提出了一种新的,混合的,等离子体和流体辅助电解系统,其中的等离子体是用来从根本上提高动力学和能量效率的CO2解离的Fluorescent振荡从来没有被耦合到一个SOC。该系统将被设计为通过流体振荡来破坏气体边界层并通过使用等离子体中形成的离子风(等离子体中离子运动产生的气流)来减少电极处的浓度极化,浓度极化是质量传递降低的原因。最终目标是为强吸热反应创造一种全新的化学反应器设计。这项可行性研究将大大减少整体能源使用和电池故障率。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph Theory Applied to Plasma Chemical Reaction Engineering
  • DOI:
    10.1007/s11090-021-10152-z
  • 发表时间:
    2021-01-19
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Holmes, Thomas D.;Rothman, Rachael H.;Zimmerman, William B.
  • 通讯作者:
    Zimmerman, William B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachael Rothman其他文献

Life cycle assessment in energy-intensive industries: Cement, steel, glass, plastic
能源密集型产业的生命周期评估:水泥、钢铁、玻璃、塑料
  • DOI:
    10.1016/j.rser.2024.115245
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    16.300
  • 作者:
    Madeline C.S. Rihner;Jacob W. Whittle;Mahmoud H.A. Gadelhaq;Su Natasha Mohamad;Ruoyang Yuan;Rachael Rothman;David I. Fletcher;Brant Walkley;Lenny S.C. Koh
  • 通讯作者:
    Lenny S.C. Koh

Rachael Rothman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Additively Manufactured Soft Robots with Integrated Fluidic Logic and Flexible Electronic Interfaces
职业:具有集成流体逻辑和灵活电子接口的增材制造软机器人
  • 批准号:
    2237506
  • 财政年份:
    2023
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Standard Grant
Desktop Printing of Soft Robots with Integrated Fluidic Control Circuits
具有集成流体控制电路的软体机器人的桌面打印
  • 批准号:
    2331917
  • 财政年份:
    2023
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Standard Grant
Thermal-plex: fluidic-free, rapid sequential multiplexed imaging of RNA and protein in brain tissues
Thermal-plex:脑组织中 RNA 和蛋白质的无流体快速连续多重成像
  • 批准号:
    10640313
  • 财政年份:
    2023
  • 资助金额:
    $ 25.66万
  • 项目类别:
Fluidic soft robot for needle guidance and motion compensation for intratympanic steroid injections
用于鼓室内类固醇注射的针引导和运动补偿的流体软机器人
  • 批准号:
    2724123
  • 财政年份:
    2022
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Studentship
Development of a fluidic chip model of PKD to elucidate cystogenic signals using kidney organoids
开发 PKD 流体芯片模型,利用肾脏类器官阐明囊原信号
  • 批准号:
    10450421
  • 财政年份:
    2022
  • 资助金额:
    $ 25.66万
  • 项目类别:
Phenotypic Profiling of Antibiotic Susceptibility via a Multiplexed Colorimetric Fluidic Assay
通过多重比色流体分析进行抗生素敏感性表型分析
  • 批准号:
    472334
  • 财政年份:
    2022
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Operating Grants
Fluidic and thermal control addition to an SPR bench
SPR 工作台添加流体和热控制
  • 批准号:
    580605-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25.66万
  • 项目类别:
    University Undergraduate Student Research Awards
Integrated Nano-Opto-Fluidic System on Sapphire towards Single-Molecule Protein Sequencing
蓝宝石上的集成纳米光流控系统用于单分子蛋白质测序
  • 批准号:
    10473301
  • 财政年份:
    2022
  • 资助金额:
    $ 25.66万
  • 项目类别:
CAREER: Textile-Based Wearable Robots with Integrated Fluidic Logic
职业:具有集成流体逻辑的基于纺织品的可穿戴机器人
  • 批准号:
    2144809
  • 财政年份:
    2022
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Standard Grant
Structural Control at Fluidic Interfaces with Nanoparticle Surfactant Assemblies
纳米颗粒表面活性剂组件流体界面的结构控制
  • 批准号:
    2136955
  • 财政年份:
    2022
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了