NanocompEIM Phase 2 - Nanocomposite Advanced Electrical Insulation Systems for Enhanced HVAC and HVDC Energy Networks

NanocompEIM 第 2 阶段 - 用于增强 HVAC 和 HVDC 能源网络的纳米复合材料先进电气绝缘系统

基本信息

  • 批准号:
    EP/P511092/1
  • 负责人:
  • 金额:
    $ 47.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Two of the most critical global challenges currently being faced are energy security and climate change. In the UK, massive investment will be required in the next decade, both to replace ageing plant and to allow for the incorporation of renewable sources. These changes will involve a paradigm shift in the ways in which we generate and transmit electricity. Since a central element of all items of power plant is electrical insulation, meeting our future energy challenges will involve the deployment of new innovative plant which, in turn, will require the development and exploitation of a new generation of high performance insulation materials. This project brings together Alstom Grid, Supergrid Institute, GnoSys Global and the University of Southampton. This consortium will develop advanced materials for use in next generation HVAC and HVDC systems, which will reduce carbon emissions, improve security of supply and reduce overall costs. The strategy centres on the use of nanocomposites as high performance dielectrics - nanodielectrics - and although this concept has attracted enormous interest since first being proposed in the mid-1990s, the field is plagued by irreproducibility. Indeed, entirely contradictory effects are often reported for nominally equivalent systems. Thus, while it has been shown that nanodielectrics can exhibit greatly improved properties, if the technological potential of these materials is ever to be realised, then it is essential that production strategies be developed to fabricate materials repeatably with known and controlled structures and properties. The work programme builds upon and exploits the NanocompEIM feasibility project supported by TSB (Ref.101144) and will progressively build from optimising functionalised and reactive nanofillers to meet wider applications in insulating components, through industrial scale up of materials processing, to the manufacture and testing of large components. The work is divided into a number of work packages (WP). In WP1, functionalised and reactive nanofillers will be optimised to meet identified HV application needs; WP2 will concern the industrial scale-up of materials processing for reliable large volume rapid batch processing of nanocomposites, together with the development of quality assurance metrics to ensure reliability and repeatability. In WP3, the resulting materials will be used to manufacture a number of large components, which will subsequently be tested in WP4, to verify large component performance. These results will be fed back into WP1 for further refinement of material factors. WP5 will focus on exploitation and dissemination and will include value-chain analysis and the development of strategic partnering and licensing strategies to facilitate broader use of the IP produced in the project. A key element in this is the establishment of custom materials supply and production arrangements through GnoSys, which will directly facilitate the adoption of the materials we will develop outside the immediate consortium. Finally, WP6 will be devoted to effective project management. From the above, sound quantitative structure-property-process relationships (QSPPR) will be established that will enable nanodielectrics to be used reliably within industry. It is commercially innovative to carry out this development with the engagement of the complete supply chain, from materials suppliers, through manufacturers of components and equipment, to end users in the form of the UK transmission system operators. While the project will focus on the electrical application of nanocomposites, the consequences of the knowledge produced will be much wider, since the QSPPRs that will emerge will be applicable in many different technology areas that employ advanced materials. As such, this project will generate a range of environmental, economic and societal impacts.
目前面临的两个最严重的全球挑战是能源安全和气候变化。在英国,未来十年将需要大量投资,以更换老化的工厂,并允许纳入可再生能源。这些变化将涉及我们发电和输电方式的范式转变。由于发电厂所有项目的核心要素是电气绝缘,满足我们未来的能源挑战将涉及部署新的创新发电厂,这反过来又需要开发和利用新一代高性能绝缘材料。该项目汇集了阿尔斯通电网、超级电网研究所、GnoSys Global和南安普顿大学。该联盟将开发用于下一代暖通空调和高压直流输电系统的先进材料,这将减少碳排放,提高供应安全性,并降低总体成本。该战略的核心是使用纳米复合材料作为高性能介电材料--纳米介电材料--尽管这一概念自1990年代中期首次提出以来吸引了巨大的兴趣,但该领域仍存在不可重复性的问题。事实上,对于名义上等价的系统,经常会报告完全相互矛盾的影响。因此,虽然已经证明纳米介电材料可以表现出极大的改进性能,但如果要实现这些材料的技术潜力,那么至关重要的是开发生产策略,以重复地制造具有已知和可控制的结构和性能的材料。该工作计划建立在TSB(参考文献101144)支持的NanoCompEIM可行性项目的基础上,并将逐步从优化功能化和反应性纳米填料,以满足绝缘元件的更广泛应用,通过材料加工的工业规模,到大型元件的制造和测试。这项工作分为多个工作包(WP)。在WP1中,功能化和反应性纳米过滤器将得到优化,以满足已确定的高压应用需求;WP2将关注材料加工的工业规模扩大,以实现可靠的大量纳米复合材料的快速批量加工,以及开发质量保证指标,以确保可靠性和可重复性。在WP3中,产生的材料将用于制造许多大型部件,随后将在WP4中进行测试,以验证大型部件的性能。这些结果将反馈到WP1中,以进一步细化材料因素。WP5将侧重于开发和传播,并将包括价值链分析以及制定战略合作伙伴关系和许可战略,以促进更广泛地使用该项目产生的知识产权。其中一个关键因素是通过GnoSys建立定制材料供应和生产安排,这将直接促进我们将在直属财团以外开发的材料的采用。最后,WP6将致力于有效的项目管理。通过以上工作,将建立合理的定量结构-性质-工艺关系(QSPPR),使纳米介电材料能够在工业中可靠地使用。从材料供应商到零部件和设备制造商,再到英国输电系统运营商的最终用户,通过参与整个供应链的参与来进行这一开发,在商业上是创新的。虽然该项目将重点放在纳米复合材料的电子应用上,但所产生的知识的后果将更加广泛,因为将出现的QSPPR将适用于许多使用先进材料的不同技术领域。因此,该项目将产生一系列环境、经济和社会影响。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NEW HVDC NANOCOMPOSITE ELECTRICAL INSULATION FOR IMPROVED MV AND HVAC PERFORMANCE
新型 HVDC 纳米复合材料电绝缘材料可提高 MV 和 HVAC 性能
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    FREEBODY N
  • 通讯作者:
    FREEBODY N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alun Vaughan其他文献

HIV-1 evasion of restriction factors: cyclophilin A and cell fusion provide a helping hand
HIV-1逃避限制因素:亲环蛋白A和细胞融合提供帮助
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Owen;Alun Vaughan;L. Nussbaum;J. Vowles;W. James;M. D. Moore
  • 通讯作者:
    M. D. Moore

Alun Vaughan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alun Vaughan', 18)}}的其他基金

POLYMAT
聚马特
  • 批准号:
    EP/N002199/1
  • 财政年份:
    2015
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Research Grant
Development of a modelling tool for performance optimization in pulsed plasma thrusters
开发用于脉冲等离子体推进器性能优化的建模工具
  • 批准号:
    EP/M506783/1
  • 财政年份:
    2014
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Research Grant
Sustainable Power Cable Materials Technologies with Improved Whole Life Performance
具有改进的全寿命性能的可持续电力电缆材料技术
  • 批准号:
    TS/G000239/1
  • 财政年份:
    2008
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Research Grant
Fantastic Plastic - back by popular demand
神奇塑料 - 应大众需求而回归
  • 批准号:
    EP/D507545/1
  • 财政年份:
    2006
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Research Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

Fabrication of toughened nanocomposite ceramic materials by equilibrium phase control
平衡相控制增韧纳米复合陶瓷材料的制备
  • 批准号:
    21K04669
  • 财政年份:
    2021
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STTR Phase I: Structure Property Relationship Studies for Designing Next Generation Nanocomposite Blood Bags
STTR 第一阶段:设计下一代纳米复合材料血袋的结构性能关系研究
  • 批准号:
    2037947
  • 财政年份:
    2021
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
SBIR Phase I: Nanocomposite Ionomers and Proton Exchange Membranes
SBIR 第一阶段:纳米复合离聚物和质子交换膜
  • 批准号:
    2014453
  • 财政年份:
    2020
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
STTR Phase I: Multi-functional, epoxy based, low cost nanocomposite coatings for corrosion protection
STTR 第一阶段:用于腐蚀防护的多功能、环氧基、低成本纳米复合涂层
  • 批准号:
    1648922
  • 财政年份:
    2017
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
SBIR Phase I: High Flux Thin Film Nanocomposite Reverse Osmosis Membrane
SBIR 第一期:高通量薄膜纳米复合反渗透膜
  • 批准号:
    1647637
  • 财政年份:
    2016
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
Phase control and functional creation of nanocomposite particles by vapor quenching process
蒸气淬火工艺纳米复合颗粒的相控制和功能创建
  • 批准号:
    15K06463
  • 财政年份:
    2015
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Heat transport control of carbon based phase change nanocomposite by nanostructure design
通过纳米结构设计控制碳基相变纳米复合材料的热传输
  • 批准号:
    26289048
  • 财政年份:
    2014
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Ultra High Energy Density Nanocomposite Capacitors
SBIR 第一阶段:超高能量密度纳米复合电容器
  • 批准号:
    1248474
  • 财政年份:
    2013
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
SBIR Phase I: Internal Photo Emission Energy Converters Based on a Wide Band Perfectly Absorbing Nanocomposite Metamaterial
SBIR 第一阶段:基于宽带完美吸收纳米复合超材料的内部光发射能量转换器
  • 批准号:
    1315307
  • 财政年份:
    2013
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
SBIR Phase I: Nanocomposite Membranes for Solvent-Resistant Nanofiltration and Reverse Osmosis
SBIR 第一阶段:用于耐溶剂纳滤和反渗透的纳米复合膜
  • 批准号:
    0946162
  • 财政年份:
    2010
  • 资助金额:
    $ 47.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了