Sustainable Power Cable Materials Technologies with Improved Whole Life Performance

具有改进的全寿命性能的可持续电力电缆材料技术

基本信息

  • 批准号:
    TS/G000239/1
  • 负责人:
  • 金额:
    $ 24.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Current extruded polymeric cable materials technologies are based on crosslinked polyethylene and, consequently, suffer from two major problems. Polyethylene melts at a relatively low temperature (~90 to 110C) and therefore crosslinking is employed to give improved thermomechanical stability. However, this only results in a safe maximum working temperature of ~95C, whilst rendering the material extremely difficult to recycle at the end of the cable's life. These factors limit cable circuit performance and create problems once the asset has reached the end of it's useful life. Addressing these problems is particularly timely due to the growing medium voltage (MV) and high voltage (HV) power utility markets in the UK and worldwide. This demand is driven by the imperitive to replace existing aged HVAC systems, to provide new power system connections to renewable generation sources in the developed world (particularly HVDC) and for infrastructure development in developing countries. In HV systems there is also a need to operate cables at higher peak loads within a flexiable AC transmission system (FACTS) framework.This proposal will remove current performance and recyclability limitations by developing a new generation of low-loss recyclable materials with high-temperature operational capabilities, evaluating their performance in cable designs and by developing and applying a whole-life assessment tool to quantify the operational/economic/environmental/sustainability benefits. The result will be improved network performance through a technology that is fundamentally recyclable as well as creating new materials that have global market development potential. The problem will be addressed by a consortium that includes a major polymer supplier, a major utility company, a University partner and a SME research provider. The project will be coordinated by National Grid with technical project management support supplied by Gnosys. Materials development will be jointly undertaken by Southampton University, GnoSys and Dow. Dow will supply materials and model cables and Southampton will undertake electrical/physical testing of them. Gnosys will provide additional materials support and the whole life assesment tool and, with National Grid, apply it to cable case studies. The following methodology will be adopted, in order to meet the project objectives. Programme 1A. A detailed review of alternative materials technologies will be initially undertaken to define best candidate materials for new high performance polymeric HV and MV cable insulation systems. Programme 1B. From the results of Phase 1, thermoplastic polymer blends with high electric strength, high thermal stabilty and good flexibility will be developed to enable the cable insulation to operate continuously at limits of 140 to 150C; that is, 50 to 60C higher than present insulation systems.Programme 1C. Ease of extrusion during manufacture and ease of reprocessing at end of life to facilitate recycling are essential requirements. Model cables will then be fabricated and assessed with respect to thermo-mechanical stability, cable flexibility, dielectric loss, enhanced electrical breakdown and voltage endurance behaviour, and ease of processing. Programme 2A. A whole life performance-economic-environmental cable model will be constructed using the newly developed LEETS methodology and software tool, appropriately modified to determine the overall sustainability performance and the benefits of the new generation materials benchmarked against existing materials. The model will explore optimum solutions for several cable designs taking into account network operational needs.Programme 2B. The selected candidate materials will then be subjected to whole-life operational, economic and environmental assessment within MV and HV cable designs informed by new cable rating and system studies linked to the LEETS tool.
目前的挤出聚合物电缆材料技术基于交联聚乙烯,因此存在两个主要问题。聚乙烯在相对较低的温度(~90至110 ℃)下熔化,因此采用交联来提高热机械稳定性。然而,这只会导致安全的最高工作温度为~ 95 ℃,同时使材料在电缆寿命结束时极难回收。这些因素限制了电缆电路的性能,并在资产达到其使用寿命时产生问题。由于英国和全球中压(MV)和高压(HV)电力公用事业市场的不断增长,解决这些问题尤为及时。这种需求是由迫切需要取代现有的老化的HVAC系统,提供新的电力系统连接到发达国家的可再生发电源(特别是HVDC)以及发展中国家的基础设施发展所驱动的。在高压系统中,还需要在灵活的交流输电系统(FACTS)框架内以更高的峰值负荷运行电缆。该提案将通过开发具有高温运行能力的新一代低损耗可回收材料来消除当前的性能和可回收性限制。评估其在电缆设计中的性能,并通过开发和应用全寿命评估工具来量化运营/经济/环境/可持续性效益。其结果将是通过一种基本上可回收的技术来改善网络性能,并创造出具有全球市场发展潜力的新材料。这个问题将由一个财团来解决,该财团包括一家主要的聚合物供应商、一家主要的公用事业公司、一家大学合作伙伴和一家中小企业研究提供商。该项目将由国家电网协调,由Gnosys提供技术项目管理支持。材料开发将由南安普顿大学、GnoSys和陶氏化学公司联合进行。陶氏将提供材料和电缆模型,南安普顿将对其进行电气/物理测试。Gnosys将提供额外的材料支持和全寿命评估工具,并与国家电网一起将其应用于电缆案例研究。为实现项目目标,将采用以下方法。方案1A.首先将对替代材料技术进行详细审查,以确定新型高性能聚合物HV和MV电缆绝缘系统的最佳候选材料。方案1B.根据第一阶段的结果,将开发出具有高电气强度、高热稳定性和良好柔韧性的热塑性聚合物共混物,使电缆绝缘能够在140至150 ℃的极限下连续工作;也就是说,比目前的绝缘系统高50至60 ℃。在制造过程中易于挤出和在寿命结束时易于再处理以促进回收是基本要求。然后将制造模型电缆,并评估热机械稳定性、电缆灵活性、介电损耗、增强的电击穿和耐压性能以及易加工性。方案2A.执行情况将使用新开发的LEETS方法和软件工具构建一个全寿命性能-经济-环境电缆模型,并进行适当修改,以确定新一代材料与现有材料相比的整体可持续性性能和优势。该模型将在考虑到网络运营需要的情况下,为几种电缆设计探索最佳解决方案。然后,选定的候选材料将在中压和高压电缆设计中进行全寿命运行、经济和环境评估,这些评估由与LEETS工具相关的新电缆额定值和系统研究提供。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermoplastic high performance cable insulation systems for flexible system operation
热塑性高性能电缆绝缘系统可实现灵活的系统操作
  • DOI:
    10.1109/icacact.2014.7223570
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vaughan A
  • 通讯作者:
    Vaughan A
Thermoplastic Cable Insulation Comprising a Blend of Isotactic Polypropylene and a Propylene-ethylene Copolymer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alun Vaughan其他文献

HIV-1 evasion of restriction factors: cyclophilin A and cell fusion provide a helping hand
HIV-1逃避限制因素:亲环蛋白A和细胞融合提供帮助
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Owen;Alun Vaughan;L. Nussbaum;J. Vowles;W. James;M. D. Moore
  • 通讯作者:
    M. D. Moore

Alun Vaughan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alun Vaughan', 18)}}的其他基金

NanocompEIM Phase 2 - Nanocomposite Advanced Electrical Insulation Systems for Enhanced HVAC and HVDC Energy Networks
NanocompEIM 第 2 阶段 - 用于增强 HVAC 和 HVDC 能源网络的纳米复合材料先进电气绝缘系统
  • 批准号:
    EP/P511092/1
  • 财政年份:
    2016
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
POLYMAT
聚马特
  • 批准号:
    EP/N002199/1
  • 财政年份:
    2015
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
Development of a modelling tool for performance optimization in pulsed plasma thrusters
开发用于脉冲等离子体推进器性能优化的建模工具
  • 批准号:
    EP/M506783/1
  • 财政年份:
    2014
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
Fantastic Plastic - back by popular demand
神奇塑料 - 应大众需求而回归
  • 批准号:
    EP/D507545/1
  • 财政年份:
    2006
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant

相似国自然基金

基于切平面受限Power图的快速重新网格化方法
  • 批准号:
    62372152
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多约束Power图快速计算算法研究
  • 批准号:
    61972128
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
网格曲面上质心Power图的快速计算及应用
  • 批准号:
    61772016
  • 批准年份:
    2017
  • 资助金额:
    46.0 万元
  • 项目类别:
    面上项目
离散最优传输问题,闵可夫斯基问题和蒙奇-安培方程中的变分原理和Power图
  • 批准号:
    11371220
  • 批准年份:
    2013
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
云计算环境下数据中心的power capping关键问题研究
  • 批准号:
    61272460
  • 批准年份:
    2012
  • 资助金额:
    81.0 万元
  • 项目类别:
    面上项目
基于信道Time/Power度量指标的TOA测距误差模型及其应用研究
  • 批准号:
    61172049
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Power MEMS 微转子-轴承系统的非线性动力学研究
  • 批准号:
    10872031
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
准气体动力循环超高能量密度Power MEMS的研究
  • 批准号:
    50575231
  • 批准年份:
    2005
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
冷热源Power MEMS应用基础研究
  • 批准号:
    50275135
  • 批准年份:
    2002
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目

相似海外基金

Indeximate - Analysing subsea power cable degradation by FEA
Indeximate - 通过 FEA 分析海底电力电缆的退化
  • 批准号:
    10073494
  • 财政年份:
    2023
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Collaborative R&D
CableDyn: Subsea Power Cable Dynamics Under Complex Ocean Environment
CableDyn:复杂海洋环境下的海底电力电缆动力学
  • 批准号:
    EP/W015102/1
  • 财政年份:
    2022
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Research Grant
Subsea power cable geotechnical stability for offshore wind applications
海上风电应用的海底电力电缆岩土稳定性
  • 批准号:
    2277528
  • 财政年份:
    2019
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Studentship
Novel methodologies for electromagnetic characterization of complex power cable systems situated in realistic environment
现实环境中复杂电力电缆系统电磁特性的新方法
  • 批准号:
    474958-2014
  • 财政年份:
    2019
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Collaborative Research and Development Grants
Study of high capacity superconducting DC power cable using longitudinal magnetic field effect
利用纵向磁场效应的大容量超导直流电力电缆研究
  • 批准号:
    19H00771
  • 财政年份:
    2019
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Novel methodologies for electromagnetic characterization of complex power cable systems situated in realistic environment
现实环境中复杂电力电缆系统电磁特性的新方法
  • 批准号:
    474958-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Collaborative Research and Development Grants
Monitoring Cable Aging Using Power Line Transmission
使用电力线传输监测电缆老化
  • 批准号:
    512844-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 24.48万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel methodologies for electromagnetic characterization of complex power cable systems situated in realistic environment
现实环境中复杂电力电缆系统电磁特性的新方法
  • 批准号:
    474958-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Collaborative Research and Development Grants
Creation of Energy Storage Function in Electric Power System by DC Superconducting Cable
直流超导电缆在电力系统中创造储能功能
  • 批准号:
    16K14216
  • 财政年份:
    2016
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Novel methodologies for electromagnetic characterization of complex power cable systems situated in realistic environment
现实环境中复杂电力电缆系统电磁特性的新方法
  • 批准号:
    474958-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 24.48万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了