LightForm: Embedding Materials Engineering in Manufacturing with Light Alloys

LightForm:将材料工程嵌入到轻合金制造中

基本信息

  • 批准号:
    EP/R001715/1
  • 负责人:
  • 金额:
    $ 615.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Forming components from light alloys (aluminium, titanium and magnesium) is extremely important to sustainable transport because they can save over 40% weight, compared to steel, and are far cheaper and more recyclable than composites. This has led to rapid market growth, where light alloys are set to dominate the automotive sector. Remaining globally competitive in light metals technologies is also critical to the UK's, aerospace and defence industries, which are major exporters. For example, Jaguar Land Rover already produces fully aluminium car bodies and titanium is extensively used in aerospace products by Airbus and Rolls Royce. 85% of the market in light alloys is in wrought products, formed by pressing, or forging, to make components.Traditional manufacturing creates a conflict between increasing a material's properties, (to increase performance), and manufacturability; i.e. the stronger a material is, the more difficult and costly it is to form into a part. This is because the development of new materials by suppliers occurs largely independently of manufacturers, and ever more alloy compositions are developed to achieve higher performance, which creates problems with scrap separation preventing closed loop recycling. Thus, often manufacturability restricts performance. For example, in car bodies only medium strength aluminium grades are currently used because it is no good having a very strong alloy that can't be made into the required shape. In cases when high strength levels are needed, such as in aerospace, specialised forming processes are used which add huge cost. To solve this conundrum, LightForm will develop the science and modelling capability needed for a new holistic approach, whereby performance AND manufacturability can both be increased, through developing a step change in our ability to intelligently and precisely engineer the properties of a material during the forming of advanced components. This will be achieved by understanding how the manufacturing process itself can be used to manipulate the material structure at the microscopic scale, so we can start with a soft, formable, material and simultaneously improve and tailor its properties while we shape it into the final product. For example, alloys are already designed to 'bake harden' after being formed when the paint on a car is cured in an oven. However, we want to push this idea much further, both in terms of performance and property prediction. For example, we already have evidence we can double the strength of aluminium alloys currently used in car bodies by new synergistic hybrid deformation and heat treatment processing methods.To do this, we need to better understand how materials act as dynamic systems and design them to feed back to different forming conditions. We also aim to exploit exciting developments in powerful new techniques that will allow us to see how materials behave in industrial processes in real time, using facilities like the Diamond x-ray synchrotron, and modern modelling methods. By capturing these effects in physical models, and integrating them into engineering codes, we will be able to embed microstructure engineering in new flexible forming technologies, that don't use fixed tooling, and enable accurate prediction of properties at the design stage - thus accelerating time to market and the customisation of products.Our approach also offers the possibility to tailor a wide range of properties with one alloy - allowing us to make products that can be more easily closed-loop recycled. We will also use embedded microstructure engineering to extend the formability of high-performance aerospace materials to increase precision and decrease energy requirements in forming, reducing the current high cost to industry.
由轻合金(铝、钛和镁)制成的部件对可持续运输极其重要,因为与钢相比,它们可以节省40%以上的重量,而且比复合材料便宜得多,而且更容易回收。这导致了市场的快速增长,轻合金将在汽车行业占据主导地位。保持轻金属技术的全球竞争力对英国的航空航天和国防工业也至关重要,这些工业是英国的主要出口国。例如,捷豹路虎已经生产了全铝车身,空客和劳斯莱斯在航空航天产品中广泛使用钛。轻合金市场的85%是锻造产品,通过压制或锻造来制造部件。传统的制造在提高材料性能(提高性能)和可制造性之间产生了冲突;即材料越坚固,就越难成形,成本也就越高。这是因为供应商对新材料的开发在很大程度上是独立于制造商进行的,而且为了实现更高的性能而开发了越来越多的合金成分,这就产生了废料分离阻碍闭合循环回收的问题。因此,可制造性往往会限制性能。例如,在汽车车身中,目前只使用中等强度的铝牌号,因为不能将非常坚固的合金制成所需的形状是不好的。在需要高强度水平的情况下,例如在航空航天中,使用专门的成形工艺,这增加了巨大的成本。为了解决这一难题,Lightform将开发一种新的整体方法所需的科学和建模能力,通过在先进部件成型过程中开发智能和精确设计材料属性的能力的阶段性变化,可以提高性能和可制造性。这将通过了解制造过程本身如何在微观尺度上操纵材料结构来实现,这样我们就可以从一种柔软、可成形的材料开始,同时改进和定制其性能,同时将其塑造成最终产品。例如,当汽车上的油漆在烤箱中固化时,合金已经被设计成可以在形成后“烘烤硬化”。然而,我们希望在性能和性能预测方面进一步推动这一想法。例如,我们已经有证据表明,通过新的协同混合变形和热处理处理方法,我们可以将目前用于车身的铝合金的强度提高一倍。要做到这一点,我们需要更好地了解材料如何作为动力系统,并设计它们以反馈到不同的成形条件。我们还致力于利用强大的新技术的令人兴奋的发展,使我们能够使用像钻石X射线同步加速器这样的设备和现代建模方法,实时观察材料在工业过程中的行为。通过在物理模型中捕捉这些影响,并将它们集成到工程代码中,我们将能够将微结构工程嵌入到新的柔性成形技术中,这些技术不使用固定工具,并能够在设计阶段准确预测性能-从而加快产品上市时间和产品的定制化。我们的方法还提供了使用一种合金定制多种性能的可能性-使我们能够制造更容易闭合循环回收的产品。我们还将利用嵌入微结构工程来扩展高性能航空航天材料的成形性,以提高成形精度并降低成形过程中的能源需求,降低目前行业的高成本。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling of Friction Stir Welded AA2139 Aluminium Alloy Panels in Tension and Blast
  • DOI:
    10.1016/j.ijimpeng.2022.104163
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    A.J. Awang Draup;B. Rodgers;P. Prangnell;Q. Li;M. Lunt;J. Robson
  • 通讯作者:
    A.J. Awang Draup;B. Rodgers;P. Prangnell;Q. Li;M. Lunt;J. Robson
Corrosion protection mechanism of 2-mercaptobenzothiazole and its potential synergistic effect with cerium ions for treatment of AA 2024-T3
  • DOI:
    10.1016/j.jelechem.2020.114081
  • 发表时间:
    2020-04-15
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Balaskas, A. C.;Curioni, M.;Thompson, G. E.
  • 通讯作者:
    Thompson, G. E.
Interactions between plastic deformation and precipitation in Aluminium alloys: A crystal plasticity model
  • DOI:
    10.1016/j.actamat.2023.118735
  • 发表时间:
    2023-02-07
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Bignon, Madeleine;Ma, Ziyu;Shanthraj, Pratheek
  • 通讯作者:
    Shanthraj, Pratheek
Comparing local deformation measurements to predictions from crystal plasticity during reverse loading of an aerospace alloy
将航空航天合金反向加载过程中的局部变形测量与晶体塑性预测进行比较
Understanding the environmentally assisted cracking (EAC) initiation and propagation of new generation 7xxx alloys using slow strain rate testing
  • DOI:
    10.1016/j.corsci.2022.110161
  • 发表时间:
    2022-02-16
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Aboura, Y.;Garner, A. J.;Burnett, T. L.
  • 通讯作者:
    Burnett, T. L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joao Quinta Da Fonseca其他文献

Joao Quinta Da Fonseca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joao Quinta Da Fonseca', 18)}}的其他基金

Recycled aerospace grade Ti-6Al-4V for structural applications in offshore renewable energy systems
用于海上可再生能源系统结构应用的再生航空航天级 Ti-6Al-4V
  • 批准号:
    NE/X007111/1
  • 财政年份:
    2022
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Research Grant
Multi-scAle INTegrity assessment for Advanced high-temperature Nuclear systems
先进高温核系统的多尺度完整性评估
  • 批准号:
    EP/R010269/1
  • 财政年份:
    2018
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Research Grant

相似海外基金

Job share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
  • 批准号:
    NE/Y005163/1
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345437
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Standard Grant
Job Share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
  • 批准号:
    NE/Y005155/1
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345438
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Standard Grant
Creative Health Boards: A New Model for Embedding Creative Health and Community Assets in Health Systems across the UK
创意健康委员会:将创意健康和社区资产融入英国卫生系统的新模式
  • 批准号:
    AH/Z505377/1
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Research Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
  • 批准号:
    2335491
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Standard Grant
DEFRA Embedding Economics into the Fourth UK Climate Change Risk Assessment
DEFRA 将经济学纳入第四次英国气候变化风险评估
  • 批准号:
    ES/Y005236/1
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Fellowship
Towards Embedding Responsible AI in the School System: Co-Creation with Young People
将负责任的人工智能嵌入学校系统:与年轻人共同创造
  • 批准号:
    AH/Z505560/1
  • 财政年份:
    2024
  • 资助金额:
    $ 615.1万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了