Integrable turbulence and rogue waves: semi-classical nonlinear Schrödinger equation framework
可积湍流和异常波:半经典非线性薛定谔方程框架
基本信息
- 批准号:EP/R00515X/2
- 负责人:
- 金额:$ 24.75万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Turbulence is one of the most recognisable, and at the same time, one of the most intriguing forms of nonlinear motion that is commonly observed in everyday phenomena such as wind blasts or fast flowing rivers. Despite its widespread occurrence, the mathematical description of turbulence remains one of the most challenging problems of modern science. Physical mechanisms giving rise to turbulent motion can be very different but typically they involve some sort of dissipation, e.g. viscosity.The current project explores a very different kind of turbulence that does not involve any dissipation but is concerned with dynamics and statistics of random nonlinear waves that are modelled by the so-called integrable partial differential equations (PDEs) such as the Korteweg - de Vries and nonlinear Schroedinger (NLS) equations. These equations are universal mathematical models for a broad spectrum of nonlinear wave phenomena in water waves, optical media, plasmas and superfluids. Owing to their rich mathematical structure and a wide range of physical applications, integrable PDEs have been the subject of incredibly intense research in the last 50 or so years.The idea of using random (stochastic) solutions to integrable equations for modelling complex nonlinear wave phenomena in the ocean and optical media has been recently put forward by V.E. Zakharov who has coined the term "integrable turbulence". In particular, the integrable turbulence framework can help to explain the formation and evolution of rogue waves - rare events of large amplitude that appear unpredictably on the ocean surface and can be devastating for ships and oil platforms. Rogue waves have also been observed in optical fibres as spontaneous field fluctuations of large amplitude with a number of undesirable implications for high power lasers and optical communications systems.To date, very few analytical results in integrable turbulence are available with the majority of the developments being numerical. The project will attack this outstanding issue by constructing the first analytical model of integrable turbulence in the framework of the semi-classical limit of the focusing NLS equation, which is a fundamental mathematical model in nonlinear science that applies to a wide range of physical contexts including water waves, plasmas, nonlinear optical fibres and Bose-Einstein condensates. In particular, the so-called breather solutions of the NLS equation have the properties that strongly suggest their links with rogue waves in the ocean and optical media. In the project, the mathematical description of integrable turbulence and the rogue wave formation will be achieved via the asymptotic approach bridging two major techniques in the semi-classical analysis of dispersive PDEs: the Whitham modulation theory and the Riemann-Hilbert problem analysis. This unified approach was recently developed by the PI in collaboration with Prof. A. Tovbis who is also one of the main collaborators in the current project. One of the fundamental mathematical hypotheses to be proved in the project is related to the special thermodynamic structure of the nonlinear spectrum of the developed integrable turbulence, which will then be used for the analysis of its kinetic properties and particularly, the determination of the rogue wave content.The unique feature of the project is the integrated pathway to impact via the linked PhD project concerned with the fibre optics implementation of the semi-classical NLS approach to integrable turbulence. The particular objectives of the PhD project, which is approved for funding by the Defence Science and Technology Laboratory, are related to the development of practical methods of analysis and control of the rogue wave formation in the partially coherent light propagation through optical fibres. The developed methods will be verified experimentally in the PhLAM optics laboratory at the University of Lille.
湍流是最容易识别的,同时也是最有趣的非线性运动形式之一,通常在日常现象中观察到,如疾风或快速流动的河流。尽管湍流现象广泛存在,但它的数学描述仍然是现代科学中最具挑战性的问题之一。引起湍流运动的物理机制可能非常不同,但通常它们涉及某种耗散,目前的项目探索了一种非常不同的湍流,它不涉及任何耗散,但与随机非线性波的动力学和统计学有关,这些波由所谓的可积偏微分方程(PDE)建模,如Korteweg -de弗里斯和非线性薛定谔(NLS)方程。这些方程是水波、光学介质、等离子体和超流体中广泛的非线性波动现象的通用数学模型。由于其丰富的数学结构和广泛的物理应用,可积偏微分方程在过去的50多年里一直是研究的热点,最近V.E.扎哈罗夫创造了“可积湍流”一词。特别是,可积湍流框架可以帮助解释流氓波的形成和演变-罕见的大振幅事件,出现在海洋表面不可预测,并可能对船舶和石油平台造成破坏。在光纤中也观察到了作为大振幅的自发场波动的流氓波,这对高功率激光器和光通信系统具有许多不希望的影响。该项目将通过在聚焦NLS方程的半经典极限框架内构建可积湍流的第一个分析模型来解决这一悬而未决的问题,NLS方程是非线性科学中的基本数学模型,适用于广泛的物理环境,包括水波,等离子体,非线性光纤和玻色-爱因斯坦凝聚。特别是,所谓的呼吸器解决方案的NLS方程的属性,强烈建议他们的联系与流氓波在海洋和光学介质。在该项目中,可积湍流和流氓波的形成的数学描述将通过渐近方法实现桥接两个主要技术在半经典分析色散偏微分方程:Whitham调制理论和Riemann-Hilbert问题分析。这种统一的方法是PI最近与A教授合作开发的。Tovbis也是目前项目的主要合作者之一。在该项目中要证明的基本数学假设之一与所发展的可积湍流的非线性谱的特殊热力学结构有关,然后将其用于分析其动力学性质,特别是,该项目的独特之处是通过与光纤有关的博士项目的综合途径影响半经典NLS方法的可积湍流的实现。博士项目的具体目标,这是由国防科学和技术实验室批准的资金,是有关的部分相干光通过光纤传播的流氓波形成的分析和控制的实用方法的发展。所开发的方法将在里尔大学的PhLAM光学实验室进行实验验证。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soliton gas in integrable dispersive hydrodynamics
- DOI:10.1088/1742-5468/ac0f6d
- 发表时间:2021-11-01
- 期刊:
- 影响因子:2.4
- 作者:El, Gennady A.
- 通讯作者:El, Gennady A.
Dispersive Riemann problems for the Benjamin–Bona–Mahony equation
- DOI:10.1111/sapm.12426
- 发表时间:2020-12
- 期刊:
- 影响因子:2.7
- 作者:M. Shearer;G. El;M. Hoefer;T. Congy
- 通讯作者:M. Shearer;G. El;M. Hoefer;T. Congy
Soliton gas in bidirectional dispersive hydrodynamics
- DOI:10.1103/physreve.103.042201
- 发表时间:2021-04-02
- 期刊:
- 影响因子:2.4
- 作者:Congy, Thibault;El, Gennady;Roberti, Giacomo
- 通讯作者:Roberti, Giacomo
From modulational instability to focusing dam breaks in water waves
- DOI:10.1103/physrevfluids.5.034802
- 发表时间:2020-03-27
- 期刊:
- 影响因子:2.7
- 作者:Bonnefoy, Felicien;Tikan, Alexey;Randoux, Stephane
- 通讯作者:Randoux, Stephane
Dispersive Riemann problem for the Benjamin-Bona-Mahony equation
Benjamin-Bona-Mahony 方程的色散黎曼问题
- DOI:10.48550/arxiv.2012.14579
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Congy T
- 通讯作者:Congy T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gennady El其他文献
Two-dimensional supersonic nonlinear Schrödinger flow past an extended obstacle.
二维超音速非线性薛定谔流穿过延伸的障碍物。
- DOI:
10.1103/physreve.80.046317 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Gennady El;A. Kamchatnov;V. V. Khodorovskii;E. S. Annibale;A. Gammal - 通讯作者:
A. Gammal
Refraction of dispersive shock waves
色散冲击波的折射
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Gennady El;V. V. Khodorovskii;Antin M. Leszczyszyn - 通讯作者:
Antin M. Leszczyszyn
Two-dimensional periodic waves in supersonic flow of a Bose–Einstein condensate
玻色-爱因斯坦凝聚体超音速流中的二维周期波
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Gennady El;Gennady El;Yu. G. Gladush;A. Kamchatnov - 通讯作者:
A. Kamchatnov
Classification of instability modes in a model of aluminium reduction cells with a uniform magnetic field
- DOI:
10.1007/s00162-010-0201-y - 发表时间:
2010-07-20 - 期刊:
- 影响因子:2.800
- 作者:
Sergei Molokov;Gennady El;Alexander Lukyanov - 通讯作者:
Alexander Lukyanov
Gennady El的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gennady El', 18)}}的其他基金
Soliton gas at the crossroads of dispersive and generalised hydrodynamics
孤子气体处于色散和广义流体动力学的十字路口
- 批准号:
EP/W032759/1 - 财政年份:2022
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
Integrable turbulence and rogue waves: semi-classical nonlinear Schrödinger equation framework
可积湍流和异常波:半经典非线性薛定谔方程框架
- 批准号:
EP/R00515X/1 - 财政年份:2017
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
Isospectral kinetic equation for solitons: integrability, exact solutions and physical applications
孤子的等谱动力学方程:可积性、精确解和物理应用
- 批准号:
EP/E040160/1 - 财政年份:2007
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
Copy of Generation of spatial dispersive shocks in the supersonic flow of Bose-Einstein condensate past an obstacle
玻色-爱因斯坦凝聚体超音速流过障碍物时产生空间色散激波的副本
- 批准号:
EP/D077559/1 - 财政年份:2006
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
相似国自然基金
山区整治河道湍流拟序结构对鱼卵漂流与发育的影响
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
螺旋棒束通道三维涡结构对各向异性湍流影响机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高剪切力湍流激活YAP蛋白介导内皮损伤
在主动脉夹层中的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
超流氦中的量子湍流动力学机理研究
- 批准号:Z25E060006
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
考虑台风强风与复杂建筑群影响的近地层湍流垂直结构研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
顾及湍流大气随机特性的广域InSAR地质灾害识别与评估
- 批准号:2025JJ60230
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高超声速湍流边界层极端事件的空间流场反演与不确定量化分析研究
- 批准号:Z25A020001
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
壁面展向震荡作用下的颗粒槽道湍流减阻机理研究
- 批准号:Z25A020012
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
更高速列车车体湍流摩阻效应及其调控方法
- 批准号:2025JJ50220
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
抑制湍流信道过量噪声的基础研究
- 批准号:QN25F010003
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Characterizing Transition to Turbulence in Pulsatile Pipe Flow
表征脉动管流中的湍流转变
- 批准号:
2335760 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
- 批准号:
2414424 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Understanding Pulsatile Helical Flow: Scaling, Turbulence, and Helicity Control
了解脉动螺旋流:缩放、湍流和螺旋度控制
- 批准号:
2342517 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
CAREER: Characterization of Turbulence in Urban Environments for Wind Hazard Mitigation
职业:城市环境湍流特征以减轻风灾
- 批准号:
2340755 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
- 批准号:
EP/Z000149/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
- 批准号:
2412025 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant