Copy of Generation of spatial dispersive shocks in the supersonic flow of Bose-Einstein condensate past an obstacle
玻色-爱因斯坦凝聚体超音速流过障碍物时产生空间色散激波的副本
基本信息
- 批准号:EP/D077559/1
- 负责人:
- 金额:$ 1.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bose-Einstein condensate (BEC) represents a unique state of matter demonstrating quantum properties on macroscopic spatial scales. After the first experimental realisation of the BEC of dilute alkali gases in 1995 (followed by the Nobel Prize for Physics in 2001) this new physical object has attracted a great deal of attention of specialists in nonlinear wave dynamics. The reason of this interest is, in particular, connected with a possibility to conduct very subtle experiments where so-called matter waves are realised. These waves represent a manifestation of quantum behavior at macroscopic scales and, unlike most quantum mechanics effects, are essentially nonlinear. Indeed, in the experiments, a number of effects have been observed which cannot be explained using conventional linear wave theory. One of the series of recent experiments of JILA Cornell group (Boulder, Colorado) on BEC flow past macroscopic obstacles revealed tthe existence of specific shock waves in the BEC similar to the so-called collisionless shocks in rarefied plasmas and undular bores on shallow water. Such dispersive shock waves consist of a large number of interacting solitons (nonlinear solitary waves with the unique particle-like behaviour). The aim of the present project is, using the Gross-Pitaevskii equation, which is a general mathematical model describing BEC dynamics, to construct an analytical theory of the dispersive shock waves in BEC. This theory will enable one to understand and quantitatively explain results of the mentioned recent experiments on the BEC flows past obstacles and, possibly, to predict new nonlinear dispersive wave effects in BEC. The project will require a substantial development of the mathematical theory of the Gross-Pitaevskii equation, which could be used by applied mathematicians and physicists in other physical contexts.
玻色-爱因斯坦凝聚体(BEC)是一种在宏观空间尺度上表现出量子特性的独特物质状态。在1995年第一次实验实现稀碱气体的BEC(随后在2001年获得诺贝尔物理学奖)之后,这个新的物理对象吸引了非线性波动力学专家的大量关注。这种兴趣的原因特别是与进行非常微妙的实验的可能性有关,在这种实验中实现了所谓的物质波。这些波代表了宏观尺度下量子行为的表现,与大多数量子力学效应不同,它们本质上是非线性的。事实上,在实验中,已经观察到了许多无法用传统的线性波理论解释的效应。JILA Cornell小组(科罗拉多博尔德)最近对BEC流通过宏观障碍物的一系列实验之一揭示了BEC中存在类似于稀薄等离子体中所谓的无碰撞激波和浅水中的波状孔的特殊激波。这种色散激波由大量相互作用的孤立子(具有独特的粒子行为的非线性孤立波)组成。本项目的目的是,使用Gross-Pitaevskii方程,这是一个通用的数学模型描述BEC动力学,建立一个分析理论的色散冲击波在BEC。这一理论将使人们能够理解和定量地解释上述最近的实验结果的BEC流过去的障碍物,并可能预测新的非线性色散波效应BEC。该项目将需要大幅度发展Gross-Pitaevskii方程的数学理论,应用数学家和物理学家可以在其他物理环境中使用。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gennady El其他文献
Two-dimensional supersonic nonlinear Schrödinger flow past an extended obstacle.
二维超音速非线性薛定谔流穿过延伸的障碍物。
- DOI:
10.1103/physreve.80.046317 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Gennady El;A. Kamchatnov;V. V. Khodorovskii;E. S. Annibale;A. Gammal - 通讯作者:
A. Gammal
Refraction of dispersive shock waves
色散冲击波的折射
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Gennady El;V. V. Khodorovskii;Antin M. Leszczyszyn - 通讯作者:
Antin M. Leszczyszyn
Two-dimensional periodic waves in supersonic flow of a Bose–Einstein condensate
玻色-爱因斯坦凝聚体超音速流中的二维周期波
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Gennady El;Gennady El;Yu. G. Gladush;A. Kamchatnov - 通讯作者:
A. Kamchatnov
Classification of instability modes in a model of aluminium reduction cells with a uniform magnetic field
- DOI:
10.1007/s00162-010-0201-y - 发表时间:
2010-07-20 - 期刊:
- 影响因子:2.800
- 作者:
Sergei Molokov;Gennady El;Alexander Lukyanov - 通讯作者:
Alexander Lukyanov
Gennady El的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gennady El', 18)}}的其他基金
Soliton gas at the crossroads of dispersive and generalised hydrodynamics
孤子气体处于色散和广义流体动力学的十字路口
- 批准号:
EP/W032759/1 - 财政年份:2022
- 资助金额:
$ 1.44万 - 项目类别:
Research Grant
Integrable turbulence and rogue waves: semi-classical nonlinear Schrödinger equation framework
可积湍流和异常波:半经典非线性薛定谔方程框架
- 批准号:
EP/R00515X/2 - 财政年份:2018
- 资助金额:
$ 1.44万 - 项目类别:
Research Grant
Integrable turbulence and rogue waves: semi-classical nonlinear Schrödinger equation framework
可积湍流和异常波:半经典非线性薛定谔方程框架
- 批准号:
EP/R00515X/1 - 财政年份:2017
- 资助金额:
$ 1.44万 - 项目类别:
Research Grant
Isospectral kinetic equation for solitons: integrability, exact solutions and physical applications
孤子的等谱动力学方程:可积性、精确解和物理应用
- 批准号:
EP/E040160/1 - 财政年份:2007
- 资助金额:
$ 1.44万 - 项目类别:
Research Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Empowering Next-Generation Spatial Digital Twins with Linked Spatial Data
利用链接的空间数据赋能下一代空间数字孪生
- 批准号:
DP240101006 - 财政年份:2024
- 资助金额:
$ 1.44万 - 项目类别:
Discovery Projects
Spatial Knowledge Acquisition by Robot Question Generation Based on Active Inference
基于主动推理的机器人问题生成空间知识获取
- 批准号:
23K16975 - 财政年份:2023
- 资助金额:
$ 1.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Studies on the mechanism of generation of cellular diversity in the central nervous system based on the detailed cell lineage and spatial omics
基于详细细胞谱系和空间组学研究中枢神经系统细胞多样性的产生机制
- 批准号:
23H02492 - 财政年份:2023
- 资助金额:
$ 1.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Next Generation Spatial Data Management for Virtual Spatial Systems
虚拟空间系统的下一代空间数据管理
- 批准号:
DP230101534 - 财政年份:2023
- 资助金额:
$ 1.44万 - 项目类别:
Discovery Projects
Next generation PHOTACS: A light switchable system for enhanced spatial and temporal precision in targeted protein degradation
下一代 PHOTACS:光可切换系统,可增强目标蛋白质降解的空间和时间精度
- 批准号:
2753267 - 财政年份:2022
- 资助金额:
$ 1.44万 - 项目类别:
Studentship
Modulation of Network Feedback Shifts the Locus of Rhythm Generation
网络反馈的调制改变了节奏生成的轨迹
- 批准号:
10515097 - 财政年份:2022
- 资助金额:
$ 1.44万 - 项目类别:
Generation of a temporal, spatial, and molecular map of in situ hematopoiesis
生成原位造血的时间、空间和分子图
- 批准号:
10415468 - 财政年份:2022
- 资助金额:
$ 1.44万 - 项目类别:
Collaborative Research: SHF: Medium: Spatial Multi-Tenant Neural Acceleration for Next Generation Datacenters
合作研究:SHF:中:下一代数据中心的空间多租户神经加速
- 批准号:
2107244 - 财政年份:2021
- 资助金额:
$ 1.44万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Spatial Multi-Tenant Neural Acceleration for Next Generation Datacenters
合作研究:SHF:中:下一代数据中心的空间多租户神经加速
- 批准号:
2107598 - 财政年份:2021
- 资助金额:
$ 1.44万 - 项目类别:
Continuing Grant
Enabling Next Generation Machine Learning for Large Scale Image Analysis
实现大规模图像分析的下一代机器学习
- 批准号:
10698607 - 财政年份:2021
- 资助金额:
$ 1.44万 - 项目类别: