Complex flows and optics to model topographical substrate design: Solar panel application balancing superhydrophobicity and concentrated photovoltaics
用于模拟地形基板设计的复杂流动和光学:平衡超疏水性和聚光光伏的太阳能电池板应用
基本信息
- 批准号:EP/R006520/1
- 负责人:
- 金额:$ 12.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluids interract with surfaces in a vast variety of natural phenomena, and technological and industrial applications. Theoretical work over the last few decades on the motion of contact lines---the location between two immiscible fluids and a solid surface---has enabled increasingly efficient oil extraction, contributed to a wide variety of printing and coating applications, and opened up the fields of micro and nanofluidics. In these applications, the focus is on the motion and profile of the fluid and has to take account of many physical effects across a wide range of lengthscales. However, the physical effects are predominately those that affect the motion of the fluid, rather than any impact from the presence of the fluid on optical, thermal or other electromagnetic wave properties.Whilst optical materials, and wetting and spreading, have received attention individually for several decades, their combined effects have not been scrutinised in detail, and several unresolved issues still elude us. In particular the coupling of the physics of fluid dynamics with electromagnetic radiation: Whenever a surface that is designed for its light, ultra-violet, or other properties, interacts with fluids such as rainwater there will be both fluid dynamics and electromagnetic wave propagation challenges to model. A prototype situation in this proposal is that of rain on solar panels, but many other examples exist: car windscreens, coated windows on buildings, radar or infra-red sensors on cars (e.g. for automatic braking systems), or at smaller scales multiphase fluids in microfluidic devices probed via visible light or other electromagnetic waves. In essence we consider any advanced optical material that has an interplay with fluids.This project will explore the fundamental relationships between light, microstructure, and hydrodynamics for the design of advanced optical materials, in a synergistic and interdisciplinary framework combining theory and computations---with the ultimate goal being optimal design leading to more efficient, safer, and lower cost materials/surfaces. In particular for the prototype of photovoltaic surfaces, it is to understand how best to achieve the objectives of self-cleaning, reflection reduction, and concentrated photovoltaics with one substrate design, whilst modelling the situation in a generality to be able to inform the myriad of other applications where electromagnetic waves interact with moving fluids.
流体在各种自然现象、技术和工业应用中与表面相互作用。在过去的几十年里,关于接触线运动的理论工作--两种不混溶流体和固体表面之间的位置--使石油开采效率越来越高,有助于各种各样的印刷和涂层应用,并开辟了微和纳米流体领域。在这些应用中,重点是流体的运动和轮廓,并且必须考虑到在宽范围的长度尺度上的许多物理效应。然而,物理效应主要是那些影响流体运动的效应,而不是流体对光学、热或其他电磁波特性的影响。虽然光学材料、润湿和扩散已经单独受到关注几十年,但它们的综合效应还没有被详细审查,一些未解决的问题仍然困扰着我们。特别是流体动力学物理与电磁辐射的耦合:每当一个表面被设计用于其光,紫外线或其他属性时,与雨水等流体相互作用,就会有流体动力学和电磁波传播的挑战。该提案中的原型情况是太阳能电池板上的雨水,但存在许多其他示例:汽车挡风玻璃,建筑物上的涂层窗户,汽车上的雷达或红外传感器(例如用于自动制动系统),或者通过可见光或其他电磁波探测的微流体设备中的较小尺度多相流体。本质上,我们考虑任何先进的光学材料,有一个与流体的相互作用。这个项目将探索光,微观结构和流体力学的先进光学材料的设计之间的基本关系,在一个协同和跨学科的框架结合理论和计算---最终目标是优化设计,导致更有效,更安全,更低成本的材料/表面。特别是对于光伏表面的原型,它是要了解如何最好地实现自清洁,反射减少,并集中photoprophics与一个基板设计的目标,同时建模的情况下,在一个通用性,能够告知无数的其他应用程序,其中电磁波与移动的流体相互作用。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Binding potentials for vapour nanobubbles on surfaces using density functional theory.
使用密度泛函理论研究蒸汽纳米气泡在表面上的结合势。
- DOI:10.1088/1361-648x/ab18e8
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Yin H
- 通讯作者:Yin H
Cahn-Hilliard Navier-Stokes simulations for design of superhydrophobic surfaces
用于超疏水表面设计的 Cahn-Hilliard Navier-Stokes 模拟
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Tranter M
- 通讯作者:Tranter M
How ice grows from premelting films and water droplets.
- DOI:10.1038/s41467-020-20318-6
- 发表时间:2021-01-11
- 期刊:
- 影响因子:16.6
- 作者:Sibley DN;Llombart P;Noya EG;Archer AJ;MacDowell LG
- 通讯作者:MacDowell LG
Coupled dynamics of solid-liquid-vapour systems with mass transfer
具有传质的固-液-汽系统耦合动力学
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Sibley D
- 通讯作者:Sibley D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Sibley其他文献
Molecular Basis for the Instability of Parasitic Actin Filaments
- DOI:
10.1016/j.bpj.2009.12.110 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Karthikeyan Diraviyam;Kristen Skillman;David Sibley;David Sept - 通讯作者:
David Sept
David Sibley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Sibley', 18)}}的其他基金
相似海外基金
Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
- 批准号:
EP/Y021479/1 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Research Grant
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
- 批准号:
EP/Y029194/1 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Fellowship
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
Mesh-free methods for turbulent reacting flows: the next generation of DNS
用于湍流反应流的无网格方法:下一代 DNS
- 批准号:
EP/W005247/2 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Research Grant
SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
- 批准号:
NE/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Research Grant
Conference: Geometric Flows and Relativity
会议:几何流和相对论
- 批准号:
2348273 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
- 批准号:
2340121 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Continuing Grant
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
- 批准号:
2347416 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
- 批准号:
2348908 - 财政年份:2024
- 资助金额:
$ 12.83万 - 项目类别:
Standard Grant














{{item.name}}会员




