4PI Two-photon Lithography for Isotropic 3D Nanostructure Fabrication

用于各向同性 3D 纳米结构制造的 4PI 双光子光刻

基本信息

  • 批准号:
    EP/R009147/1
  • 负责人:
  • 金额:
    $ 98.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Optical lithography is a process that utilises light to define a specific pattern within a material. Standard optical lithography is capable of patterning materials in two dimensions and the possible feature size scales with the wavelength of the light. It is research into this process and associated techniques that has been one of the main drivers of the technological revolution, is partly responsible for the reduction of areal density within computer hard drives and the doubling of processor power every 18 months (Moore's Law).As we progress through the 21st century it is likely that 3D architectures on the nanoscale will become important in developing advanced materials for future data processing and storage technologies. Two-photon lithography is a 3D fabrication methodology that has recently been commercialised and is having a huge impact upon science, allowing the fabrication of bespoke 3D geometries on a length-scale of 200nm horizontally and 500nm vertically. Commercial two-photon lithography has made the fabrication of 3D systems on the several-100nm scale accessible to scientists in a variety of fields allowing the realisation of swimming micro-robots for targeted drug delivery, bioscaffolds and a range of photonic and mechanical metamaterials. A significant setback with two-photon lithography is the asymmetry in the lateral and vertical resolution, which limits both the absolute size and the type of geometry that can be realised. In this proposal, we are going to utilise our world-leading expertise in non-linear microscopy to modify a commercial two-photon lithography system and obtain enhanced resolution. We will utilise techniques that have already significantly improved the resolution in fluorescence microscopy in order to achieve a 100nm isotropic resolution. The newly built system will be used by our team to fabricate two types of 3D nanoscale magnetic materials, in geometries and on length-scales that are difficult to achieve using other fabrication methodologies. Our work in this area will pave the way for next generation 3D memory technolgies such as magnetic racetrack memory and help us to understand magnetic charge transport in novel magnetic materials. In addition, we will be working with project partners in the regenerative medicine and photonics communities in order to realise a number of novel 3D nanostructured materials. Firstly, we will work with stem cell researchers in order to fabricate artificial tissues that will be used in stem cell differentiation experiments. Our work here will provide a fascinating insight into the role of nanoscale topography upon stem cell differentiation and may eventually have applications in tissue/organ growth. Secondly, we will work with academics studying photonic crystals - artificial materials that are capable of blocking electromagnetic radiation within a certain range of the spectrum. The majority of 3D photonic crystals that have been made to date are capable of attenuating electromagnetic waves that are outside the visible range of the spectrum, limiting applications in optoelectronics. Our work here will allow the fabrication and measurement of photonic crystals that can be used with visible and infra-red light. This work may pave the way to next generation three-dimensional optical circuits that can be utilised by telecommunication industries.Overall, this project will build an internationally unique instrument and utilise it to fabricate a range of advanced materials. This will put the U.K. at the forefront of 3D lithography technologies and the associated biomedical, magnetic and photonic materials that will be realised using our newly built instrument.
光学光刻是一种利用光在材料中定义特定图案的工艺。标准光学光刻技术能够在二维上对材料进行图案化,并且可能的特征尺寸与光的波长有关。对这一过程和相关技术的研究一直是技术革命的主要推动力之一,也是计算机硬盘驱动器面密度降低和处理器能力每18个月翻一番(摩尔定律)的部分原因。随着我们在21世纪的进步,纳米级的3D架构很可能在开发用于未来数据处理和存储技术的先进材料方面变得重要。双光子光刻是一种3D制造方法,最近已经商业化,对科学产生了巨大的影响,允许在水平200纳米和垂直500纳米的长度尺度上制造定制的3D几何形状。商用双光子光刻技术使得科学家们可以在多个领域制造100纳米尺度的3D系统,从而实现用于靶向药物输送、生物支架和一系列光子和机械超材料的游泳微型机器人。双光子光刻的一个重大缺陷是横向和垂直分辨率的不对称,这限制了绝对尺寸和可以实现的几何形状的类型。在这个提案中,我们将利用我们在非线性显微镜方面的世界领先的专业知识来修改商用双光子光刻系统,以获得更高的分辨率。我们将利用已经显著提高了荧光显微镜分辨率的技术,以达到100纳米的各向同性分辨率。新建立的系统将被我们的团队用来制造两种类型的三维纳米级磁性材料,在几何形状和长度尺度上,这是使用其他制造方法难以实现的。我们在这一领域的工作将为下一代3D存储技术(如磁赛道存储器)铺平道路,并帮助我们理解新型磁性材料中的磁荷输运。此外,我们将与再生医学和光子学社区的项目合作伙伴合作,以实现一些新的3D纳米结构材料。首先,我们将与干细胞研究人员合作,制造用于干细胞分化实验的人工组织。我们在这里的工作将为纳米级地形在干细胞分化中的作用提供一个迷人的见解,并可能最终应用于组织/器官生长。其次,我们将与学者合作研究光子晶体——一种在一定光谱范围内能够阻挡电磁辐射的人造材料。迄今为止,大多数3D光子晶体都能够衰减可见光范围之外的电磁波,这限制了其在光电子学中的应用。我们在这里的工作将允许光子晶体的制造和测量,可以用于可见光和红外光。这项工作可能为下一代可用于电信行业的三维光学电路铺平道路。总的来说,这个项目将建立一个国际独特的仪器,并利用它来制造一系列先进的材料。这将使英国处于3D光刻技术和相关生物医学、磁性和光子材料的前沿,这些技术将通过我们新制造的仪器实现。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spin-Wave Spectral Analysis in Crescent-Shaped Ferromagnetic Nanorods
  • DOI:
    10.1103/physrevapplied.19.064045
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Mateusz Gołȩbiewski;Hanna Reshetniak;Uladzislau Makartsou;M. Krawczyk;Arjen van den Berg;S. Ladak;A. Barman
  • 通讯作者:
    Mateusz Gołȩbiewski;Hanna Reshetniak;Uladzislau Makartsou;M. Krawczyk;Arjen van den Berg;S. Ladak;A. Barman
Realisation of a frustrated 3D magnetic nanowire lattice
  • DOI:
    10.1038/s42005-018-0104-6
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    May, Andrew;Hunt, Matthew;Ladak, Sam
  • 通讯作者:
    Ladak, Sam
Curvilinear Micromagnetism - From Fundamentals to Applications
曲线微磁学 - 从基础到应用
  • DOI:
    10.1007/978-3-031-09086-8_5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dobrovolskiy O
  • 通讯作者:
    Dobrovolskiy O
Asymmetric dual Bloch point domain walls in cylindrical magnetic nanowires
圆柱形磁性纳米线中的不对称双布洛赫点畴壁
  • DOI:
    10.1063/5.0089291
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Askey J
  • 通讯作者:
    Askey J
Imaging the magnetic nanowire cross section and magnetic ordering within a suspended 3D artificial spin-ice
对悬浮 3D 人造自旋冰内的磁性纳米线横截面和磁序进行成像
  • DOI:
    10.1063/5.0176907
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Harding E
  • 通讯作者:
    Harding E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam Ladak其他文献

Sam Ladak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sam Ladak', 18)}}的其他基金

Heat Transport in Novel 3D Patterned Nanostructures
新型 3D 图案化纳米结构中的热传输
  • 批准号:
    EP/X012735/1
  • 财政年份:
    2023
  • 资助金额:
    $ 98.32万
  • 项目类别:
    Research Grant
Three-Dimensional Artificial Spin-Ice
三维人工旋转冰
  • 批准号:
    EP/L006669/1
  • 财政年份:
    2013
  • 资助金额:
    $ 98.32万
  • 项目类别:
    Research Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
  • 批准号:
    11104247
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Upright two-photon microscope for intravital fluorescence imaging and photostimulation
用于活体荧光成像和光刺激的正置双光子显微镜
  • 批准号:
    537547683
  • 财政年份:
    2024
  • 资助金额:
    $ 98.32万
  • 项目类别:
    Major Research Instrumentation
Two Photon Polymerization Equipment
二光子聚合设备
  • 批准号:
    537082733
  • 财政年份:
    2024
  • 资助金额:
    $ 98.32万
  • 项目类别:
    Major Research Instrumentation
In Vivo Function and Metabolism Evaluation of Glaucomatous RGCs by Two-Photon Scanning Laser Ophthalmology
双光子扫描激光眼科评价青光眼 RGC 的体内功能和代谢
  • 批准号:
    10660761
  • 财政年份:
    2023
  • 资助金额:
    $ 98.32万
  • 项目类别:
Investigating the Recruitment of Different Neuronal Subpopulations by Intracortical Micro Stimulation Using Two Photon-Microscopy
使用两个光子显微镜研究皮质内微刺激对不同神经元亚群的招募
  • 批准号:
    10604754
  • 财政年份:
    2023
  • 资助金额:
    $ 98.32万
  • 项目类别:
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
  • 批准号:
    2319406
  • 财政年份:
    2023
  • 资助金额:
    $ 98.32万
  • 项目类别:
    Continuing Grant
Validation and Optimization of Two-Photon Dendritic Voltage Imaging in Vivo
体内双光子树突电压成像的验证和优化
  • 批准号:
    10658307
  • 财政年份:
    2023
  • 资助金额:
    $ 98.32万
  • 项目类别:
In vivo two-photon imaging of vascular invasion and stem cell translocation in calvarial bone
颅骨血管侵袭和干细胞易位的体内双光子成像
  • 批准号:
    10603163
  • 财政年份:
    2023
  • 资助金额:
    $ 98.32万
  • 项目类别:
Deliberate Design and Synthesis of Thionated Organic Photosensitizers Activated by One- and Two-Photon Absorption in the Near-Infrared
近红外一光子和二光子吸收激活的硫代有机光敏剂的精心设计与合成
  • 批准号:
    2246805
  • 财政年份:
    2023
  • 资助金额:
    $ 98.32万
  • 项目类别:
    Standard Grant
All holographic two-photon electrophysiology
全全息双光子电生理学
  • 批准号:
    10616937
  • 财政年份:
    2023
  • 资助金额:
    $ 98.32万
  • 项目类别:
3D Scanning Two-photon Fiberscope Technology for Simultaneous Multi-region Multi-cell-type Imaging in Freely-moving Rodents
3D 扫描双光子纤维镜技术,可对自由移动的啮齿动物进行同步多区域多细胞型成像
  • 批准号:
    10660682
  • 财政年份:
    2023
  • 资助金额:
    $ 98.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了