Holey Sampling: Topological Analysis of Sampling Patterns for Assessing Error in High-dimensional Quadrature
孔采样:用于评估高维正交误差的采样模式的拓扑分析
基本信息
- 批准号:EP/R019606/1
- 负责人:
- 金额:$ 12.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Estimating integrals of functions forms the cornerstone of many general classes of problems such as optimisation, sampling and normalisation; these problems, in turn, are central tools for a plethora of applications across various fields such as computer graphics, computer vision and machine learning. The integrand, or function to be integrated, is complicated and rarely available in closed form. Its domain spans spaces of arbitrarily high dimensionality. Exact integration is hopeless and approximation is unavoidable in practice. An estimate of the integral is typically constructed using evaluations of the integrand at a number of sampled locations in the domain. The set of points where the function is sampled is often referred to collectively as a sampling pattern. For computer graphics applications, a modern animation feature film of length 1.5h typically involves the generation of a total of a few hundreds of trillions of high-dimensional samples that are mapped into light paths.Although a number of strategies have been proposed towards generating samples, measuring the quality of high-dimensional sampling patterns is an open problem. Sampling strategies are currently compared on a case-by-case basis by explicitly computing errors in the context of each application independently. The computation associated with measures such as discrepancy and Fourier analysis scale exponentially with dimensionality and are therefore not practicable for samples in high-dimensional domains. The proposed work seeks to quantify equidistribution of high-dimensional point sets using an alternative measure to discrepancy that is tractable. This project will establish mathematical connections between computational topology, stochastic geometry and error analysis for Monte Carlo integration. The goal is to develop a measure for assessing the quality of sampling-based estimators purely based on the samples used. The derived theory will be evaluated and applied on Monte Carlo rendering for Computer Graphics applications.
函数积分估计构成了许多一般问题的基石,如优化、采样和归一化;这些问题反过来又是计算机图形学、计算机视觉和机器学习等不同领域大量应用的中心工具。被积函数或要积分的函数很复杂,很少以封闭的形式提供。它的域跨越任意高维的空间。在实际应用中,精确积分是无望的,近似是不可避免的。通常使用在域中的多个采样位置处的被积函数的求值来构造积分的估计。对函数进行采样的点集通常统称为采样模式。对于计算机图形学应用,长度为1.5h的现代动画故事片通常涉及总共生成几百万亿个高维样本,这些样本被映射到光路中。尽管已经提出了许多生成样本的策略,但测量高维样本模式的质量是一个悬而未决的问题。采样策略目前是在逐个案例的基础上通过独立地显式计算每个应用程序的上下文中的误差来比较的。与诸如差异和傅立叶分析之类的度量相关的计算与维度成指数关系,因此对于高维域中的样本是不可行的。这项拟议的工作试图使用一种容易处理的差异的替代度量来量化高维点集的均匀分布。该项目将建立计算拓扑学、随机几何学和蒙特卡罗积分误差分析之间的数学联系。其目标是制定一种措施,用于纯粹根据所使用的样本来评估基于抽样的估计者的质量。该理论将被评估并应用于计算机图形学中的蒙特卡罗绘制。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fourier Analysis of Correlated Monte Carlo Importance Sampling
相关蒙特卡罗重要性采样的傅立叶分析
- DOI:10.1111/cgf.13613
- 发表时间:2019
- 期刊:
- 影响因子:2.5
- 作者:Singh, Gurprit;Subr, Kartic;Coeurjolly, David;Ostromoukhov, Victor;Jarosz, Wojciech
- 通讯作者:Jarosz, Wojciech
Learning rewards from exploratory demonstrations using probabilistic temporal ranking
- DOI:10.1007/s10514-023-10120-w
- 发表时间:2020-02
- 期刊:
- 影响因子:3.5
- 作者:Michael Burke;Katie Lu;Daniel Angelov;Artūras Straižys;Craig Innes;Kartic Subr;S. Ramamoorthy
- 通讯作者:Michael Burke;Katie Lu;Daniel Angelov;Artūras Straižys;Craig Innes;Kartic Subr;S. Ramamoorthy
Spectral Coarsening with Hodge Laplacians
使用 Hodge Laplacian 进行光谱粗化
- DOI:10.1145/3588432.3591544
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Keros A
- 通讯作者:Keros A
Dist2Cycle: A Simplicial Neural Network for Homology Localization
- DOI:10.1609/aaai.v36i7.20673
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:A. Keros;Vidit Nanda;Kartic Subr
- 通讯作者:A. Keros;Vidit Nanda;Kartic Subr
Active Localization of Gas Leaks Using Fluid Simulation
- DOI:10.1109/lra.2019.2895820
- 发表时间:2019-01
- 期刊:
- 影响因子:5.2
- 作者:Martin Asenov;M. Rutkauskas;D. Reid;Kartic Subr;S. Ramamoorthy
- 通讯作者:Martin Asenov;M. Rutkauskas;D. Reid;Kartic Subr;S. Ramamoorthy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kartic Subr其他文献
Articulate your NeRF: Unsupervised articulated object modeling via conditional view synthesis
阐明你的 NeRF:通过条件视图合成进行无监督的铰接对象建模
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jianning Deng;Kartic Subr;Hakan Bilen - 通讯作者:
Hakan Bilen
Vid2Param: Online system identification from video for robotics applications
Vid2Param:机器人应用视频的在线系统识别
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Martin Asenov;Michael Burke;Daniel Angelov;Todor Davchev;Kartic Subr;S. Ramamoorthy - 通讯作者:
S. Ramamoorthy
Two-frame stereo photography in low-light settings: a preliminary study
弱光环境下的两幅立体摄影:初步研究
- DOI:
10.1145/2414688.2414699 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Kartic Subr;Gwyneth Bradbury;J. Kautz - 通讯作者:
J. Kautz
Action Sequencing Using Visual Permutations
使用视觉排列的动作排序
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:5.2
- 作者:
Michael Burke;Kartic Subr;S. Ramamoorthy - 通讯作者:
S. Ramamoorthy
Kartic Subr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 12.86万 - 项目类别:
Studentship
EMPOWHPVR: Exploring the factors that impact HPV self-sampling uptake amongst Black women and people with a cervix in Peel region, Ontario
EMPOWHPVR:探讨影响安大略省皮尔地区黑人女性和宫颈癌患者 HPV 自我采样率的因素
- 批准号:
502585 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
- 批准号:
MR/X030776/1 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Research Grant
ERI: From Data to Design: Enhancing Pedestrian Infrastructure for Well-Being through Mobile Sensing and Experience Sampling in the Wild
ERI:从数据到设计:通过移动传感和野外体验采样增强行人基础设施以促进福祉
- 批准号:
2347012 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Standard Grant
Advancing the boundaries of grain sampling: A robot for the autonomous, safe and representative sampling of grain bulks
突破谷物采样的界限:用于对散装谷物进行自主、安全和代表性采样的机器人
- 批准号:
10089327 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Collaborative R&D
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
- 批准号:
EP/Y029631/1 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Fellowship
Oregon State University Marine Rock and Sediment Sampling (MARSSAM) Facility Oceanographic Instrumentation 2024
俄勒冈州立大学海洋岩石和沉积物采样 (MARSSAM) 设施海洋学仪器 2024
- 批准号:
2415967 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Standard Grant
Development of PU signal sampling technique of fluxgate magnetometer and progressive comprehension of three-dimensional magnetic field in space
磁通门磁力计PU信号采样技术的发展与空间三维磁场的渐进理解
- 批准号:
23H01230 - 财政年份:2023
- 资助金额:
$ 12.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Surveillance and sampling to maintain absence of pests and diseases
监测和采样以确保没有病虫害
- 批准号:
LP220100003 - 财政年份:2023
- 资助金额:
$ 12.86万 - 项目类别:
Linkage Projects
Fiber sampling technique and counting protocol development for carbon nanotubes
碳纳米管纤维采样技术和计数协议开发
- 批准号:
10593857 - 财政年份:2023
- 资助金额:
$ 12.86万 - 项目类别: