ERI: From Data to Design: Enhancing Pedestrian Infrastructure for Well-Being through Mobile Sensing and Experience Sampling in the Wild
ERI:从数据到设计:通过移动传感和野外体验采样增强行人基础设施以促进福祉
基本信息
- 批准号:2347012
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Engineering Research Initiation (ERI) award will advance research in understanding the impact of pedestrian infrastructure on various aspects of well-being, including emotions, stress, and cognitive abilities. Pedestrian infrastructure plays a crucial role in influencing well-being metrics and can either encourage or discourage walking as a mode of transportation, even in areas with safe walkways. By employing innovative human sensing techniques, this project will establish a comprehensive pedestrian data collection framework. Through collaboration with practitioners and road users in focus groups, alternative infrastructure designs will be developed and evaluated using immersive virtual environments. This research bridges the gap between real-world data, infrastructure design, and behavioral aspects of walking adoption. This project has the potential to drive positive changes in urban planning, design, and public policy through data-driven insights. The resulting naturalistic dataset can benefit research in various disciplines such as behavioral science, psychology, and computer science. This project will bring opportunities for graduate and undergraduate researchers as well as Ph.D. students from all walks of life to learn, grow, become trained in an academic environment, and contribute to the science of human-centered infrastructure design.Current pedestrian research predominantly concentrates on safety, leaving a substantial gap in well-being-related data, especially in real-world settings. Well-being metrics while including physical aspects, encompass different parameters such as perceived stress, valence, and arousal and emotion metrics, creativity, social interactions, and cognitive abilities among other factors. The first component of this study introduces a novel naturalistic framework to comprehensively monitor and collect data on various aspects of pedestrian well-being. This framework intelligently integrates data from mobile sensing devices, such as smartwatches, with in-the-wild experience sampling techniques through a specifically designed app. In the second component, this framework is applied in a suburban area to create a first-of-its-kind, longitudinal, and naturalistic dataset, addressing the scarcity of pedestrian well-being data. This component will yield quantitative and qualitative models connecting infrastructural elements with real-world pedestrian well-being metrics, employing observational studies and computer vision techniques. The project will develop heatmaps highlighting regions associated with different well-being metrics that will be shared with broader research communities. The third component will result in preliminary guidelines for identifying design flaws in pedestrian infrastructure considering human well-being. Lastly, Immersive Virtual Environments will be utilized to assess alternative designs objectively and subjectively, closing the loop in enhancing pedestrian infrastructure prior to construction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该工程研究启动(ERI)奖将推进研究,以了解行人基础设施对幸福的各个方面的影响,包括情绪,压力和认知能力。行人基础设施在影响幸福指标方面发挥着至关重要的作用,可以鼓励或阻止步行作为一种交通方式,即使在有安全人行道的地区。透过采用创新的人体感应技术,该项目将建立一个全面的行人数据收集框架。通过与焦点小组中的从业人员和道路使用者合作,将使用沉浸式虚拟环境开发和评估替代基础设施设计。这项研究弥合了现实世界的数据,基础设施设计和步行采用的行为方面之间的差距差距。该项目有可能通过数据驱动的见解推动城市规划、设计和公共政策的积极变革。由此产生的自然主义数据集可以使行为科学,心理学和计算机科学等各个学科的研究受益。该项目将为研究生和本科生研究人员以及博士生带来机会。目前的行人研究主要集中在安全性方面,在与健康相关的数据方面存在很大差距,尤其是在现实环境中。幸福指标虽然包括身体方面,但包括不同的参数,如感知压力、效价、唤醒和情绪指标、创造力、社会互动和认知能力等因素。本研究的第一个组成部分介绍了一种新的自然主义框架,全面监测和收集数据的各个方面的行人福祉。该框架通过专门设计的应用程序将来自移动的传感设备(如智能手表)的数据与野外体验采样技术智能地整合在一起。在第二部分中,该框架应用于郊区,以创建首个同类的纵向和自然主义数据集,解决行人健康数据稀缺的问题。这一部分将产生定量和定性模型,将基础设施要素与现实世界的行人健康指标联系起来,采用观察研究和计算机视觉技术。该项目将开发热图,突出显示与不同福祉指标相关的区域,这些指标将与更广泛的研究社区共享。第三个组成部分将产生初步准则,以确定考虑到人类福祉的行人基础设施的设计缺陷。最后,沉浸式虚拟环境将被用于客观和主观地评估替代设计,在施工前完成改善行人基础设施的循环。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arash Tavakoli其他文献
Impact of windows, natural materials, and diverse representations in built environments on psychological and physiological well-being: A between-subjects experiment in immersive virtual environments
建筑环境中的窗户、天然材料以及多样化呈现对心理和生理健康的影响:沉浸式虚拟环境中的一项组间实验
- DOI:
10.1016/j.buildenv.2025.113147 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:7.600
- 作者:
Basma Altaf;Arash Tavakoli;Parker Ruth;Andrea Green;Jiaxuan Xu;Sneha Jain;Ethan Chiu;Lucy Zhang Bencharit;Elizabeth L. Murnane;James A. Landay;Sarah L. Billington - 通讯作者:
Sarah L. Billington
Leveraging Immersive Virtual Environments for Occupant Well-Being Analysis
利用沉浸式虚拟环境进行乘员福祉分析
- DOI:
10.1061/9780784485248.011 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Basmah Altaf;Arash Tavakoli;Eva Bianchi;James Landay;Sarah L. Billington - 通讯作者:
Sarah L. Billington
Multiplayer Games for Learning Multirobot Coordination Algorithms
用于学习多机器人协调算法的多人游戏
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Arash Tavakoli;Haig Nalbandian;Nora Ayanian - 通讯作者:
Nora Ayanian
Using Computer Vision and Parametric Design Software to Quantify Nature Dose in Indoor Built Environments
使用计算机视觉和参数化设计软件量化室内建筑环境中的自然剂量
- DOI:
10.1061/9780784485248.012 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Eva Bianchi;Arash Tavakoli;Sarah L. Billington - 通讯作者:
Sarah L. Billington
Multirobot Coordination by Multiplayer Games
多人游戏的多机器人协调
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Arash Tavakoli;Nora Ayanian - 通讯作者:
Nora Ayanian
Arash Tavakoli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Deep Learning with Limited Data for Battery Materials Design
电池材料设计中数据有限的深度学习
- 批准号:
EP/Y000552/1 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Research Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
- 批准号:
2335491 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:
2344664 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
A Platform for Hierarchical Data-Driven Design, Fabrication, and Control of Modular Soft Robots with Slender Beams for Locomotion and Manipulation
用于具有细长梁的移动和操纵模块化软机器人的分层数据驱动设计、制造和控制平台
- 批准号:
23K26071 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DATA - Drone Design using AI for Transport Applications
DATA - 使用人工智能进行运输应用的无人机设计
- 批准号:
10080391 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Collaborative R&D
Photogrammetry through co-design of data-driven 3D estimation and imaging systems
通过数据驱动的 3D 估计和成像系统的共同设计进行摄影测量
- 批准号:
23H05491 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
The use of AI strategy data in redefining modern tabletop game design
AI策略数据的运用重新定义现代桌面游戏设计
- 批准号:
2890044 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Studentship
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
- 批准号:
2896325 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Studentship
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant