Embedding Machine Learning within Quantifier Elimination Procedures
将机器学习嵌入量词消除程序中
基本信息
- 批准号:EP/R019622/1
- 负责人:
- 金额:$ 12.87万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns computational mathematics and logic. The aim is to improve the ability of computers to perform ``Quantifier Elimination'' (QE). We say a logical statement is ``quantified'' if it is preceded by a qualification such as "for all" or "there exists". Here is an example of a quantified statement: "there exists x such that ax^2 + bx + c = 0 has two solutions for x".While the statement is mathematically precise the implications are unclear - what restrictions does this statement of existence force upon us? QE corresponds to replacing a quantified statement by an unquantified one which is equivalent. In this case we may replace the statement by:"b^2 - 4ac > 0", which is the condition for x to have two solutions.You may have recognised this equivalence from GCSE mathematics, when studying the quadratic equation. The important point here is that the latter statement can actually be derived automatically by a computer from the former, using a QE procedure.QE is not subject to the numerical rounding errors of most computations. Solutions are not in the form of a numerical answer but an algebraic description which offers insight into the structure of the problem at hand. In the example above, QE shows us not what the solutions to a particular quadratic equation are, but how in general the number of solutions depends on the coefficients a, b, and c.QE has numerous applications throughout engineering and the sciences. An example from biology is the determination of medically important values of parameters in a biological network; while another from economics is identifying which hypotheses in economic theories are compatible, and for what values of the variables. In both cases, QE can theoretically help, but in practice the size of the statements means state-of-the-art procedures run out of computer time/memory. The extensive development of QE procedures means they have many options and choices about how they are run. These decisions can greatly affect how long QE takes, rendering an intractable problem easy and vice versa. Making the right choice is a critical, but understudied problem and is the focus of this project. At the moment QE procedures make such choices either under direct supervision of a human or based on crude human-made heuristics (rules of thumb based on intuition / experience but with limited scientific basis). The purpose of this project is to replace these by machine learning techniques. Machine Learning (ML) is an overarching term for tools that allow computers to make decisions that are not explicitly programmed, usually involving the statistical analysis of large quantities of data. ML is quite at odds with the field of Symbolic Computation which studies QE, as the latter prizes exact correctness and so shuns the use of probabilistic tools making its application here very novel. We are able to combine these different worlds because the choices which we will use ML to make will all produce a correct and exact answer (but with different computational costs). The project follows pilot studies undertaken by the PI which experimented with one ML technique and found it improved upon existing heuristics for two particular decisions in a QE algorithm. We will build on this by working with the spectrum of leading ML tools to identify the optimal techniques for application in Symbolic Computation. We will demonstrate their use for both low level algorithm decisions and choices between different theories and implementations. Although focused on QE, we will also demonstrate ML as being a new route to optimisation in Computer Algebra more broadly and work encompasses Project Partners and events to maximise this. Finally, the project will deliver an improved QE procedure that makes use of ML automatically, without user input. This will be produced in the commercial Computer Algebra software Maple in collaboration with industrial Project Partner Maplesoft.
这个项目涉及计算数学和逻辑。其目的是提高计算机执行“量词消除”(QE)的能力。我们说一个逻辑语句是“量化的”,如果它前面有一个限定词,如“for all”或“here Existes”。这里有一个量化陈述的例子:“存在x使得ax^2+bx+c=0对x有两个解”。虽然这一陈述在数学上是精确的,但其含义并不清楚--这一存在陈述对我们施加了什么限制?量化宽松相当于用一个等价的非量化语句替换一个量化语句。在这种情况下,我们可以用“b^2-4ac>;0”来代替它,这是x有两个解的条件。当你学习二次方程时,你可能已经从GCSE数学中认识到了这个等价性。这里重要的一点是,后一种表述实际上可以由计算机使用量化宽松程序从前者自动推导出来。量化宽松不受大多数计算的数值舍入误差的影响。解决方案不是以数字答案的形式,而是一种代数描述,它提供了对手头问题结构的洞察。在上面的例子中,QE向我们展示的不是特定二次方程的解是什么,而是解的数量一般如何取决于系数a、b和c。QE在工程和科学中有许多应用。生物学的一个例子是确定生物网络中具有医学重要性的参数值;而经济学的另一个例子是确定经济学理论中的哪些假设是兼容的,以及变量的值是什么。在这两种情况下,量化宽松在理论上都可以有所帮助,但实际上,语句的大小意味着最先进的程序耗尽了计算机时间/内存。量化宽松程序的广泛发展意味着,它们在如何运行方面有很多选择和选择。这些决定可能会极大地影响量化宽松需要多长时间,从而使棘手的问题变得容易,反之亦然。做出正确的选择是一个关键但尚未得到充分研究的问题,也是本项目的重点。目前,量化宽松程序要么在人类的直接监督下做出这样的选择,要么基于原始的人为试探法(基于直觉/经验的经验规则,但科学基础有限)。这个项目的目的是用机器学习技术取代它们。机器学习(ML)是一个重要的术语,指的是允许计算机做出未明确编程的决策的工具,通常涉及对大量数据的统计分析。ML与研究QE的符号计算领域非常不同,因为后者重视精确的正确性,因此避免使用概率工具,使其在这里的应用非常新颖。我们能够组合这些不同的世界,因为我们将使用ML做出的选择都将产生正确和准确的答案(但具有不同的计算成本)。该项目遵循了PI进行的试点研究,该研究试验了一种ML技术,发现它改进了QE算法中两个特定决策的现有启发式方法。我们将以此为基础,通过使用领先的ML工具来确定在符号计算中应用的最佳技术。我们将演示它们在低级算法决策以及不同理论和实现之间的选择中的使用。虽然我们专注于量化宽松,但我们也将展示ML作为一条在更广泛的计算机代数中进行优化的新途径,并围绕项目合作伙伴和活动来最大化这一点。最后,该项目将提供一个改进的量化宽松程序,无需用户输入即可自动使用ML。这将与工业项目合作伙伴Maplesoft合作,在商业计算机代数软件Maple中制作。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algorithmically Generating New Algebraic Features of Polynomial Systems for Machine Learning
- DOI:
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Dorian Florescu;M. England
- 通讯作者:Dorian Florescu;M. England
SC-Square: Future Progress with Machine Learning?
- DOI:10.48550/arxiv.2209.04361
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:M. England
- 通讯作者:M. England
Using Machine Learning to Improve Cylindrical Algebraic Decomposition
- DOI:10.1007/s11786-019-00394-8
- 发表时间:2019-12-01
- 期刊:
- 影响因子:0.8
- 作者:Huang, Zongyan;England, Matthew;Paulson, Lawrence C.
- 通讯作者:Paulson, Lawrence C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew England其他文献
Foreword, with a Dedication to Andreas Weber
- DOI:
10.1007/s11786-020-00476-y - 发表时间:
2020-06-05 - 期刊:
- 影响因子:1.000
- 作者:
Matthew England;Wolfram Koepf;Timur Sadykov;Werner M. Seiler;Thomas Sturm - 通讯作者:
Thomas Sturm
Abelian functions associated with genus three algebraic curves
与亏格三代数曲线相关的阿贝尔函数
- DOI:
10.1112/s1461157010000355 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
J. C. Eilbeck;Matthew England;Yoshihiro Ônishi - 通讯作者:
Yoshihiro Ônishi
Some new addition formulae for Weierstrass elliptic functions
Weierstrass 椭圆函数的一些新加法公式
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Matthew England;J. Chris Eilbeck and Yoshihiro Onishi - 通讯作者:
J. Chris Eilbeck and Yoshihiro Onishi
Matthew England的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew England', 18)}}的其他基金
Pushing Back the Doubly-Exponential Wall of Cylindrical Algebraic Decomposition
推回柱代数分解的双指数墙
- 批准号:
EP/T015748/1 - 财政年份:2021
- 资助金额:
$ 12.87万 - 项目类别:
Research Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant