ISCF Wave 1: High Energy Density Capacitors Manufactured with Optoelectronic Tweezers (CapOET)

ISCF 第一波:用光电镊子制造的高能量密度电容器 (CapOET)

基本信息

  • 批准号:
    EP/R020892/1
  • 负责人:
  • 金额:
    $ 122.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

There is an increasing demand for storing electrical energy for portable devices with the popularity of mobile phones and emerging trends such as wearable technologies. The move from petrol fuelled cars to electric cars to reduce carbon emissions and hence tackle climate change has also produced an increased need for electrical energy storage so that today more than one billion lithium-ion batteries are sold each year. Lithium-ion batteries are usually used because they can store more electrical energy than competing technologies whilst being physically small and light. Capacitors are an alternative method of storing electrical energy however because they are larger and weigh more than batteries they are only used in applications where a lot of energy is needed in a short time as they can discharge their energy quickly. This project aims to reduce the size and weight of capacitors whilst still allowing them to store sufficient electrical energy so that they can compete with batteries and use their natural advantages of quick charging and discharging along with their improved device lifetimes (their ability to store energy does not reduce over time like a battery does) to create better energy storage devices. Our industrial partners Dyson are interested in this technology for their small portable and autonomous products.The amount of charge that a capacitor can store is dependent on the material that it is made out of. The more the material resists the electrical field applied to it (e.g. higher permittivity) the more energy that can be stored in the device. In this project, we will develop a material that has a fantastically higher permittivity than naturally occurring materials. To achieve this material we will use a novel technique for assembling metal nanoparticles (particles that are 1 billionth of a meter across) into long strands of particles that look like "pearl chains" with insulating gaps between them. Once we have made a capacitor with our new technique we will measure how much energy the capacitor can store and hence how much the material it is made out of can resist the electrical fields applied. We will perform simulations of the devices and compare them to the results measured to help determine which physical description best describe the physics present in the new material. This project will culminate in the production of a technology demonstrator where we will produce a device that uses one of our capacitors to store energy to run an LED.Our proposal fits with the Industrial Strategy Challenge Fund (ISCF) objectives 1, 2 and 3. Our project partners, Dyson, are planning to invest £1B in energy storage research and development over the next several years, much of which will be spent investing in other companies working on energy storage however our project will give them an improved capability and increased capacity to invest this money in UK based research (ISCF objective 1).Our project involves interdisciplinary research between Chemists, Engineers and Physicists to produce a new way to manufacture high permittivity materials. The new interdisciplinary research comes from using a chemical approach to build nanometre scale building blocks and then assemble these with electrical engineering techniques into long thin interrupted metallic strands whose size allow them to exhibit quantum mechanical phenomena. This new interdisciplinary method of creating these structures for energy storage fits with the ISCF objective 2. Energy storage in supercapacitors in an established field of research with a great deal of activity aimed at increasing the energy that can be stored at the solid/liquid interface. Our technique is innovative in that it uses a fundamentally different approach where the charge is stored in nanodielectrics instead. This project will then allow our project partners to be involved in research which is more innovative and higher risk than they otherwise would be able to undertake (ISCF objective 3).
随着移动电话的普及和可穿戴技术等新兴趋势的出现,对便携式设备存储电能的需求越来越大。从汽油燃料汽车转向电动汽车,以减少碳排放,从而应对气候变化,这也增加了对电能存储的需求,因此今天每年销售超过10亿个锂离子电池。锂离子电池通常被使用,因为它们比竞争对手的技术可以存储更多的电能,同时又小又轻。电容器是储存电能的另一种方法,但是因为它们比电池更大更重,所以它们只用于需要在短时间内大量能量的应用中,因为它们可以快速放电。该项目旨在减少电容器的尺寸和重量,同时仍然允许它们存储足够的电能,以便它们可以与电池竞争,并利用其快速充放电的天然优势以及其改进的设备寿命(它们的储存能量的能力不会像电池一样随着时间的推移而减少)来创造更好的能量存储设备。我们的工业合作伙伴戴森对这项技术感兴趣,他们的小型便携式和自主产品。电容器能储存的电量取决于制造它的材料。材料对施加于其上的电场的抵抗力越强(例如介电常数越高),设备中可以存储的能量就越多。在这个项目中,我们将开发一种比自然材料具有更高介电常数的材料。为了获得这种材料,我们将使用一种新技术,将金属纳米颗粒(直径为10亿分之一米的颗粒)组装成长链状的颗粒,看起来像“珍珠链”,它们之间有绝缘间隙。一旦我们用我们的新技术制造了一个电容器,我们将测量电容器能储存多少能量,从而测量制造电容器的材料能抵抗施加的电场。我们将对设备进行模拟,并将其与测量结果进行比较,以帮助确定哪种物理描述最能描述新材料中的物理特性。这个项目最终将产生一个技术演示器,我们将生产一个设备,使用我们的一个电容器来储存能量来运行LED。我们的建议符合产业战略挑战基金(ISCF)的目标1、2和3。我们的项目合作伙伴Dyson计划在未来几年内投资10亿英镑用于储能研究和开发,其中大部分将用于投资其他从事储能工作的公司,但是我们的项目将使他们提高能力并增加将这笔钱投资于英国研究的能力(ISCF目标1)。我们的项目涉及化学家、工程师和物理学家之间的跨学科研究,以产生一种制造高介电常数材料的新方法。新的跨学科研究来自于使用化学方法构建纳米级构建块,然后用电子工程技术将这些构建块组装成细长的中断金属链,其大小允许它们展示量子力学现象。这种创造这些储能结构的跨学科新方法符合ISCF的目标2。超级电容器的能量存储是一个已建立的研究领域,其大量活动旨在增加可存储在固/液界面的能量。我们的技术是创新的,因为它使用了一种完全不同的方法,将电荷存储在纳米电介质中。该项目将允许我们的项目合作伙伴参与比他们能够承担的更具创新性和更高风险的研究(ISCF目标3)。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Challenges to the Development of the Next Generation of Self-Reporting Cardiovascular Implantable Medical Devices.
下一代自我报告心血管植入式医疗器械开发面临的挑战。
Toward Synthetic Vascular Graft Monitoring Using a Flip-Chip-on-Flex Impedance Spectroscopy Sensor
  • DOI:
    10.1109/jsen.2022.3220022
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Marland,Jamie R. K.;Tsiamis,Andreas;Mitra,Srinjoy
  • 通讯作者:
    Mitra,Srinjoy
Assembly of mesoscopic to macroscopic particles with optoelectronic tweezers (OET)
用光电镊子(OET)组装介观到宏观粒子
  • DOI:
    10.1117/12.2322982
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neale S
  • 通讯作者:
    Neale S
Manipulate and Immobilize Microparticles by Optoelectronic Tweezers and Ultraviolet Curing
通过光电镊子和紫外线固化操纵和固定微粒
  • DOI:
    10.1364/oma.2019.aw4e.4
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li W
  • 通讯作者:
    Li W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Neale其他文献

Lexical Semantics Annotation for Enriched Portuguese Corpora
丰富葡萄牙语语料库的词汇语义注释
Leveraging Lexical Resources and Constraint Grammar for Rule-Based Part-of-Speech Tagging in Welsh
利用词汇资源和约束语法进行威尔士语基于规则的词性标注
Seeking to Reproduce "Easy Domain Adaptation"
寻求重现“轻松域适应”
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luís Manuel dos Santos Gomes;G.J.M. van Noord;A. Branco;Steven Neale
  • 通讯作者:
    Steven Neale

Steven Neale的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Neale', 18)}}的其他基金

Ultrasonically enabled supportless 3D printing (Sonobeamer)
超声波无支撑 3D 打印 (Sonobeamer)
  • 批准号:
    EP/W025175/1
  • 财政年份:
    2022
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Research Grant
Assembly of electronic components with Optoelectronic Tweezers
用光电镊子组装电子元件
  • 批准号:
    EP/L022257/1
  • 财政年份:
    2014
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Research Grant

相似国自然基金

WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
  • 批准号:
    32270940
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
  • 批准号:
    2021JJ31110
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
  • 批准号:
    12004282
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
  • 批准号:
    31970841
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
复微分方程的亚纯解和偏微分方程的rogue wave解
  • 批准号:
    11701382
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
植物SCAR/WAVE复合体与线粒体协同调节的自噬机制及其对柑橘果实品质的影响
  • 批准号:
    31772281
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
WAVE2调控SATB1促进Tfh细胞分化在系统性红斑狼疮发病机制中的研究
  • 批准号:
    81673058
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
  • 批准号:
    DP240102104
  • 财政年份:
    2024
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Discovery Projects
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Standard Grant
Feasibility Study for a Wave Energy Pilot Project in Indonesia
印度尼西亚波浪能试点项目可行性研究
  • 批准号:
    10046610
  • 财政年份:
    2023
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Feasibility Studies
Offshore Renewable Energy: wind, tidal or wave
海上可再生能源:风、潮汐或波浪
  • 批准号:
    2881261
  • 财政年份:
    2023
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Studentship
Offshore Renewable Energy: wind, tidal or wave
海上可再生能源:风、潮汐或波浪
  • 批准号:
    2881265
  • 财政年份:
    2023
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Studentship
Collaborative Research: Evolution and fate of wind-derived internal wave energy
合作研究:风生内波能的演化和命运
  • 批准号:
    2319609
  • 财政年份:
    2023
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Standard Grant
Offshore Renewable Energy: wind, tidal or wave
海上可再生能源:风、潮汐或波浪
  • 批准号:
    2881260
  • 财政年份:
    2023
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Studentship
Collaborative Research: Evolution and fate of wind-derived internal wave energy
合作研究:风生内波能的演化和命运
  • 批准号:
    2319611
  • 财政年份:
    2023
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Standard Grant
Offshore Renewable Energy: wind, tidal or wave
海上可再生能源:风、潮汐或波浪
  • 批准号:
    2880882
  • 财政年份:
    2023
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Studentship
Offshore Renewable Energy: wind, tidal or wave
海上可再生能源:风、潮汐或波浪
  • 批准号:
    2881264
  • 财政年份:
    2023
  • 资助金额:
    $ 122.19万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了