Advanced Continuous Tow Shearing in 3D (ACTS3D): Advanced fibre placement technology for manufacturing defect-free complex 3D composite structures
先进的 3D 连续丝束剪切 (ACTS3D):先进的纤维铺放技术,用于制造无缺陷的复杂 3D 复合材料结构
基本信息
- 批准号:EP/R023247/1
- 负责人:
- 金额:$ 66.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aerospace industry is the key sector for growth of the UK economy. The potential market share of the UK, which is specialised in the most complicated and high tech aircraft parts, is estimated to be around $600 billion. This enormous market demand was also driven by the environmental issue, which requires the lightweight composite aircraft structures to meet the future CO2 emission regulations.The automated fibre placement (AFP) process is the core technology that underpins the UK's aerospace industry. This process can lay up carbon fibre tape (or tow) materials on a three dimensional mould surface using a robotic or a computer-controlled gantry machine at high speed, which is mainly used in the aerospace industry to manufacture composite structural components such as fuselages, wings, and spars. The AFP machine's capability of feeding individual tows at different speeds enables steering the fibres within the tows along curved paths, and such fibre steering allows for manufacturing composite structures with complex geometry as well as realising ultra-high structural efficiency beyond the limit of the conventional straight fibre lay-up design. However, it has a few fundamental limitations in fibre steering to produce complex composite components. First, since the AFP machine steers the fibres by bending the tow tape, fibre-buckling defects are always generated. Second, it needs to frequently cut the tows when laying up on a doubly-curved surface that cannot be perfectly tessellated with the finite width tows, which also creates defects such as fibre discontinuity and resin pockets. Such process-induced defects are a critical barrier that reduces the production speed and complicates the design process in the aerospace industry. Furthermore, as the shape of the composite components becomes more complex, the minimisation of such defects in fibre steering process is getting more important.This project aims to develop a new game-changing fibre placement technology that can produce defect-free doubly-curved composite components, based on fundamental understanding of the impregnation and deformation characteristics of tow materials. The new head mechanism to be developed will be capable of producing variable width tows on-the-fly to cover tessellated sections of a complex 3D surface without gaps. The scientific knowledge on tow-level deformation characteristics will be integrated with an advanced head mechanisms as well as a new head control algorithm in order to realise the buckling free fibre steering using the continuous tow shearing mechanism on complex 3D surfaces. Finally, a prototype head will be tested on a robotic platform programmed using the developed head control algorithm, and the lay-up quality and accuracy will be evaluated using various inspection methods. This establishes a proof-of-concept manufacturing process for complex 3D composite components.Although the industry is making various attempts to solve the quality problems by modifying the process parameters or the tow material, there are no existing AFP technologies that can either steer the tow without defects or control the tow width. The successful development of this unique and disruptive AFP process will provide the UK aerospace industry with a fundamental solution to the quality problems that they are facing, which enable the UK to be at the forefront of next-generation automated composites manufacturing technology.
航空航天业是英国经济增长的关键部门。英国专门生产最复杂和高科技的飞机零件,其潜在市场份额估计约为6000亿美元。这一巨大的市场需求也是由环境问题驱动的,环境问题要求轻质复合材料飞机结构满足未来的二氧化碳排放法规。自动纤维铺放(AFP)工艺是支撑英国航空航天工业的核心技术。该工艺可以使用机器人或计算机控制的龙门式机器高速将碳纤维带(或丝束)材料铺放在三维模具表面上,其主要用于航空航天工业以制造复合材料结构部件,如机身、机翼和翼梁。AFP机器以不同速度供给单个丝束的能力使得能够沿着沿着弯曲路径操纵丝束内的纤维,并且这种纤维操纵允许制造具有复杂几何形状的复合结构以及实现超出常规直纤维铺叠设计的极限的超高结构效率。然而,它在纤维转向以生产复杂的复合材料部件方面有一些基本的限制。首先,由于AFP机器通过弯曲丝束带来引导纤维,因此总是产生纤维屈曲缺陷。第二,当铺设在不能与有限宽度丝束完美镶嵌的双曲面上时,需要频繁地切割丝束,这也会产生诸如纤维不连续和树脂袋的缺陷。这种工艺引起的缺陷是航空航天工业中降低生产速度和使设计过程复杂化的关键障碍。此外,随着复合材料构件的形状变得越来越复杂,在纤维转向过程中尽量减少此类缺陷变得越来越重要。本项目旨在开发一种新的改变游戏规则的纤维铺放技术,该技术可以生产无缺陷的双曲面复合材料构件,基于对丝束材料的浸渍和变形特性的基本理解。待开发的新头机制将能够在运行中产生可变宽度的丝束,以覆盖复杂3D表面的镶嵌部分而没有间隙。两级变形特性的科学知识将与先进的头机制以及新的头控制算法相结合,以实现在复杂的3D表面上使用连续丝束剪切机制的无屈曲纤维转向。最后,一个原型头将在机器人平台上进行测试,使用开发的头控制算法编程,并使用各种检查方法评估铺层质量和精度。这为复杂的3D复合材料部件建立了一种概念验证制造工艺。尽管业界正在通过修改工艺参数或丝束材料来解决质量问题,但现有的AFP技术既不能控制丝束的无缺陷性,也不能控制丝束的宽度。这种独特的、颠覆性的AFP工艺的成功开发将为英国航空航天工业提供一个根本性的解决方案,以解决他们面临的质量问题,使英国能够走在下一代自动化复合材料制造技术的最前沿。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental characterisation of large in-plane shear behaviour of unidirectional carbon fibre/epoxy prepreg tapes for continuous tow shearing (CTS) process
用于连续丝束剪切 (CTS) 工艺的单向碳纤维/环氧预浸带大面内剪切行为的实验表征
- DOI:10.1016/j.compositesa.2022.107168
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang B
- 通讯作者:Zhang B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ByungChul (Eric) Kim其他文献
ByungChul (Eric) Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ByungChul (Eric) Kim', 18)}}的其他基金
Novel Tow Termination Technology for High-Quality AFP Production of Composite Structures with Blended Ply Drop-offs
用于高质量 AFP 生产混合层脱落复合结构的新型丝束终止技术
- 批准号:
EP/P027288/1 - 财政年份:2017
- 资助金额:
$ 66.02万 - 项目类别:
Research Grant
相似海外基金
3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
- 批准号:
2753054 - 财政年份:2026
- 资助金额:
$ 66.02万 - 项目类别:
Studentship
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
- 批准号:
2345803 - 财政年份:2024
- 资助金额:
$ 66.02万 - 项目类别:
Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 66.02万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 66.02万 - 项目类别:
Standard Grant
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 66.02万 - 项目类别:
Standard Grant
Continuous flow solvothermal synthesis of silver-3d metals nanoalloys for platinum-group-free catalysts
用于无铂族催化剂的银-3D金属纳米合金的连续流动溶剂热合成
- 批准号:
24K17587 - 财政年份:2024
- 资助金额:
$ 66.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Seismic Performance and Evaluation of Hybrid Frame with CFST Column-continuous Beam Joints
钢管混凝土柱-连续梁节点混合框架抗震性能及评价
- 批准号:
24K17393 - 财政年份:2024
- 资助金额:
$ 66.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Synthesis and Continuous Manufacture of Novel, High Performing Polymeric Lubricants for the Next Generation of Electric Transportation
用于下一代电动交通的新型高性能聚合物润滑剂的合成和连续制造
- 批准号:
2489089 - 财政年份:2024
- 资助金额:
$ 66.02万 - 项目类别:
Studentship
AI Assisted Continuous Flow Electrochemistry for Pharmaceutical Manufacture
人工智能辅助制药制造的连续流电化学
- 批准号:
LP230100436 - 财政年份:2024
- 资助金额:
$ 66.02万 - 项目类别:
Linkage Projects
CAREER: Understanding the Integrated Cyber-Physical Resilience of Continuous Critical Manufacturing
职业:了解连续关键制造的集成网络物理弹性
- 批准号:
2338968 - 财政年份:2024
- 资助金额:
$ 66.02万 - 项目类别:
Standard Grant