The Origin of Non-Radiative Losses in Metal Halide Perovskites
金属卤化物钙钛矿非辐射损失的起源
基本信息
- 批准号:EP/R023980/1
- 负责人:
- 金额:$ 34.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solar cells and light-emitting diodes (LEDs) made from novel, inexpensive materials have the potential to be low-cost, clean and scalable solutions to supply our growing electricity and lighting demands. While solar cells convert sunlight into electrical energy, LEDs are the reverse, with electrical energy transformed into emitted light. Metal halide perovskites are extremely promising materials for both applications. Perovskite solar cells have improved their power conversion efficiency from 3% to 22% in just three years, approaching that of the market-leading technology, silicon (25%). Early reports of perovskite LEDs are also encouraging though relatively unexplored. Perovskite ingredients are abundant and can be combined inexpensively into thin films with a crystalline structure similar to silicon. Rolls of thin, flexible perovskite film could one day be rapidly spooled from a special printer to make lightweight, bendable, and colourful solar and light-emitting sheets.Nevertheless, the full potential of perovskites has not yet been realised. Strong light emission is essential for both solar cells and LEDs to reach their theoretical efficiency limits, but emission and therefore performance is still limited by parasitic emission loss pathways that are still poorly understood. The films are made up of densely packed crystals (grains) and we hypothesise that each grain has slightly different local chemistry and structural properties, some of which are defective. The ultimate aim of this work is to determine the fundamental origin of these loss pathways in perovskite films and full devices by elucidating which are the optimal chemical and structural properties, and using this information to achieve optimal films.This aim will be achieved by measuring the grain-to-grain emission using a novel microscope system which will allow rapid imaging of the emission with high spatial resolution. Most microscopic emission measurements on perovskites to date have employed confocal microscopes in which the emission is mapped by taking sequential measurements of the spectra of adjacent regions and moving the sample point by point until the region of interest has been covered. On the other hand, imaging consists of focusing the image of a sample on a detector and measuring for each pixel the intensity of light at one particular wavelength, much like taking a photograph, but at a single wavelength. In some applications, the power of the laser used in imaging can be orders of magnitude higher than in mapping, since the power is spread over the whole region instead of a single point, thus allowing measurement under device-like conditions. Imaging also permits a higher resolution and reduces the acquisition time by orders of magnitude.Emission images under both light (photoluminescence) and when applying an electrical bias (electroluminescence) will be acquired. The emission images of the same scan area will then be directly correlated with maps of the local grain-to-grain chemistry using electron microscopy techniques including energy-dispersive X-Ray (EDX) spectroscopy and local structural measurements using a nano-X-Ray Diffraction (n-XRD) beamline at the Diamond synchrotron. The work is highly timely and the results will provide a platform for efforts to take perovskites to their efficiency limits. The work will reveal the specific preferred chemistry and structural properties which must be targeted for growth of higher performing perovskite films and also reveal insights into potential post-treatments capable of healing defects in the perovskite materials. This will be of strong interest to a range of academic researchers in the perovskite field as well as industrial entities such as UK-based Oxford PV, which is leading the current commercialisation efforts of this exciting technology. Finally, the project will allow the PI to establish his team as a world-leading group with a cutting-edge programme and toolset.
由新型廉价材料制成的太阳能电池和发光二极管(LED)有可能成为低成本、清洁和可扩展的解决方案,以满足我们不断增长的电力和照明需求。太阳能电池将太阳光转化为电能,而LED则相反,电能转化为发射的光。金属卤化物钙钛矿是用于这两种应用的非常有前途的材料。在短短三年时间里,Percent太阳能电池的功率转换效率从3%提高到22%,接近市场领先的硅技术(25%)。钙钛矿LED的早期报告也令人鼓舞,尽管相对未经探索。Peroxide成分丰富,可以廉价地组合成具有类似于硅的晶体结构的薄膜。有一天,一卷又一卷的柔性钙钛矿薄膜可以从一台特殊的打印机上快速卷绕起来,制成重量轻、可弯曲、色彩鲜艳的太阳能和发光板。然而,钙钛矿的全部潜力还没有实现。强光发射对于太阳能电池和LED达到其理论效率极限是必不可少的,但发射和因此的性能仍然受到寄生发射损失途径的限制,这些途径仍然知之甚少。这些薄膜是由密集的晶体(晶粒)组成的,我们假设每个晶粒都具有略微不同的局部化学和结构特性,其中一些是有缺陷的。这项工作的最终目的是通过阐明哪些是最佳的化学和结构特性,并使用这些信息来实现最佳的films.This目的将通过测量晶粒到晶粒的发射使用一种新型的显微镜系统,这将允许快速成像的发射具有高空间分辨率,以确定这些损失途径的钙钛矿薄膜和完整的设备的根本起源。迄今为止,大多数对钙钛矿的微观发射测量都采用共焦显微镜,其中通过对相邻区域的光谱进行连续测量并逐点移动样品直到覆盖感兴趣的区域来绘制发射。另一方面,成像包括将样品的图像聚焦在检测器上,并测量每个像素在一个特定波长下的光强度,就像拍摄照片一样,但在单一波长下。在某些应用中,成像中使用的激光功率可能比映射中高几个数量级,因为功率分布在整个区域而不是单个点上,从而允许在类似设备的条件下进行测量。成像还允许更高的分辨率,并将采集时间减少了几个数量级。将采集光下(光致发光)和施加电偏压(电致发光)时的发射图像。然后,使用电子显微镜技术,包括能量色散X射线(EDX)光谱和在金刚石同步加速器上使用纳米X射线衍射(n-XRD)光束线的局部结构测量,将同一扫描区域的发射图像与局部晶粒间化学的地图直接相关。这项工作是非常及时的,其结果将为钙钛矿的效率极限提供一个平台。这项工作将揭示特定的优选化学和结构特性,这些特性必须针对更高性能的钙钛矿薄膜的生长,并且还揭示了对能够修复钙钛矿材料中缺陷的潜在后处理的见解。这将引起钙钛矿领域一系列学术研究人员以及英国牛津光伏等工业实体的浓厚兴趣,牛津光伏正在领导这项令人兴奋的技术的商业化工作。最后,该项目将允许PI将其团队建立为具有尖端计划和工具集的世界领先团队。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films
局部对称性破缺驱动多晶卤化物钙钛矿薄膜中皮秒自旋域的形成
- DOI:10.1038/s41563-023-01550-z
- 发表时间:2023
- 期刊:
- 影响因子:41.2
- 作者:Ashoka A
- 通讯作者:Ashoka A
Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films.
局部对称性破缺驱动多晶卤化物钙钛矿薄膜中皮秒自旋域的形成。
- DOI:10.17863/cam.96648
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ashoka A
- 通讯作者:Ashoka A
Local Energy Landscape Drives Long-Range Exciton Diffusion in Two-Dimensional Halide Perovskite Semiconductors.
- DOI:10.1021/acs.jpclett.1c00823
- 发表时间:2021-04-29
- 期刊:
- 影响因子:0
- 作者:Baldwin A;Delport G;Leng K;Chahbazian R;Galkowski K;Loh KP;Stranks SD
- 通讯作者:Stranks SD
Local Energy Landscape Drives Long-Range Exciton Diffusion in Two-Dimensional Halide Perovskite Semiconductors
局部能源景观驱动二维卤化物钙钛矿半导体中的长程激子扩散
- DOI:10.17863/cam.66967
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Baldwin A
- 通讯作者:Baldwin A
Elucidating and Mitigating Degradation Processes in Perovskite Light-Emitting Diodes
- DOI:10.1002/aenm.202002676
- 发表时间:2020-11-16
- 期刊:
- 影响因子:27.8
- 作者:Andaji-Garmaroudi, Zahra;Abdi-Jalebi, Mojtaba;Stranks, Samuel D.
- 通讯作者:Stranks, Samuel D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Stranks其他文献
Samuel Stranks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Stranks', 18)}}的其他基金
Copper-based Perovskites with Horizontal Transition Dipole Moment for Highly Efficient Light-emitting Diodes
具有水平跃迁偶极矩的铜基钙钛矿用于高效发光二极管
- 批准号:
EP/X025764/1 - 财政年份:2022
- 资助金额:
$ 34.81万 - 项目类别:
Fellowship
Revolutionizing Medical Imaging (ReImagine) through Ubiquitous, Low-Dose, Automated Computed Tomography Diagnostic Systems
通过无处不在的低剂量自动计算机断层扫描诊断系统彻底改变医学成像 (ReImagine)
- 批准号:
EP/W004445/1 - 财政年份:2021
- 资助金额:
$ 34.81万 - 项目类别:
Research Grant
Affordable Perovskite Solar Irrigation Systems for Small-holder Farmers in Ethiopia (APSISSFE)
为埃塞俄比亚小农提供经济实惠的钙钛矿太阳能灌溉系统 (APSISSFE)
- 批准号:
EP/T02030X/1 - 财政年份:2020
- 资助金额:
$ 34.81万 - 项目类别:
Research Grant
相似国自然基金
Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
- 批准号:32301796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
- 批准号:82303936
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变分法在双临界Hénon方程和障碍系统中的应用
- 批准号:12301258
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
- 批准号:32170797
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Non-Oberbeck-Boussinesq效应下两相自然对流问题的建模及高效算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植物胚乳发育过程中non-CG甲基化调控的分子机制探究
- 批准号:LQ21C060001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Diagnosis of anisotropic and non-equilibrium energy distribution by collisional radiative process of volumetric recombining plasma
体积重组等离子体碰撞辐射过程诊断各向异性和非平衡能量分布
- 批准号:
23H01148 - 财政年份:2023
- 资助金额:
$ 34.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring the origins of non-radiative losses in metal-halide perovskite solar cells
探索金属卤化物钙钛矿太阳能电池非辐射损失的根源
- 批准号:
545713-2020 - 财政年份:2022
- 资助金额:
$ 34.81万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Improvement of diamond semiconductor device properties by clarifying the non-radiative defect generation mechanism
通过阐明非辐射缺陷产生机制来提高金刚石半导体器件的性能
- 批准号:
22K04951 - 财政年份:2022
- 资助金额:
$ 34.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the origins of non-radiative losses in metal-halide perovskite solar cells
探索金属卤化物钙钛矿太阳能电池非辐射损失的根源
- 批准号:
545713-2020 - 财政年份:2021
- 资助金额:
$ 34.81万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exploring the origins of non-radiative losses in metal-halide perovskite solar cells
探索金属卤化物钙钛矿太阳能电池非辐射损失的根源
- 批准号:
545713-2020 - 财政年份:2020
- 资助金额:
$ 34.81万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Improvement of device characteristics by elucidation of non-radiative defect formation mechanism in diamond crystals
通过阐明金刚石晶体中非辐射缺陷形成机制来改善器件特性
- 批准号:
19K05293 - 财政年份:2019
- 资助金额:
$ 34.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterising recent trends in non-CO2 radiative forcing and considering their implications
描述非二氧化碳辐射强迫的最新趋势并考虑其影响
- 批准号:
2102318 - 财政年份:2018
- 资助金额:
$ 34.81万 - 项目类别:
Studentship
Predominance of quantum well structure for solar cell application from a non-radiative electron transition loss point of view
从非辐射电子跃迁损失的角度来看,量子阱结构在太阳能电池应用中的优势
- 批准号:
18K04876 - 财政年份:2018
- 资助金额:
$ 34.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the non-destructive and 3-dimentional profile investigation of the non-radiative recombination in the nano-structure inserted solar cells
纳米结构插入太阳能电池中非辐射复合的无损和三维轮廓研究的发展
- 批准号:
16H04648 - 财政年份:2016
- 资助金额:
$ 34.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation and control of generation mechanism of non-radiative defects in diamond crystal
金刚石晶体非辐射缺陷产生机制的阐明与控制
- 批准号:
16K06262 - 财政年份:2016
- 资助金额:
$ 34.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)