Targeting Molecular Magnetic Hysteresis at Liquid Nitrogen Temperatures

液氮温度下的分子磁滞目标

基本信息

  • 批准号:
    EP/R02605X/1
  • 负责人:
  • 金额:
    $ 55.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

For over fifty years economic factors have driven a steady trend of making electronic devices smaller. However, the rate of progress in miniaturisation has started to stall, and it has been predicted that a plateau may be reached within ten years. As such, "bottom-up" alternatives are sought to rival the current "top-down" approach to ensure continued technological advancement. One promising solution for high-density data storage is to use Single Molecule Magnets (SMMs). These are molecules that can store magnetic information, and could therefore give the smallest possible devices.Lanthanide (Ln) SMMs have emerged as leading candidates due to their favourable magnetic properties, but at present these only function with expensive liquid helium cooling. The highest temperature at which Ln SMMs retain magnetic information is dictated by the choice of Ln, the atoms bonded to the Ln and the resultant molecular geometry, and the competition of magnetic relaxation pathways. These factors can all potentially be controlled but at present the relaxation mechanisms are still poorly understood. Efficient relaxation processes can significantly lower the temperature at which magnetic information is retained, based on what would be predicted solely from consideration of an isolated Ln SMM, and thus these must be investigated to make progress.We have recently found that Ln cations bonded only to two five-membered carbon atom rings in an axial arrangement give a SMM for which the highest temperatures at which magnetic hysteresis, a memory effect that is essential for data storage, has ever been observed. As such, we target the syntheses of more complex Ln SMM structures based upon this motif to provide even higher hysteresis temperatures. These systems could operate above liquid nitrogen temperatures, at which point they would become technologically viable. The magnetic relaxation pathways of these systems can be studied in depth over a large temperature range. This will allow us to deepen our understanding of the factors governing relaxation mechanisms, so that in future we can design Ln SMMs that disfavour such processes and can store magnetic information at even higher temperatures.In recent work (Nature, 2017, 548, 439), we have used our Ln SMM design criteria to report by far the largest molecular hysteresis temperature reported to date (60 K). This is the single biggest leap in nearly 25 years (the previous record, 14 K, was set in 2011; 4 K was the initial achievement in 1993) and is now only 17 K away from operation under an economically viable liquid nitrogen regime. We have made theoretical predictions for improvements to the design of this system to raise the hysteresis temperature even further by modifying the carbon atom rings, and have set out synthetic routes to achieve this goal in this proposal. More ambitiously, we target the synthesis of "triple decker" compounds that contain two dysprosium cations and three small carbon atom rings in an approximately cylindrical arrangement. Ln ions prefer high coordination numbers, hence the synthesis of triple decker complexes containing only five-membered carbon atom rings would be a remarkable synthetic achievement.All synthetic studies in this proposal will be complemented by high level physical analysis of magnetic and electronic properties, including computational modelling. This will provide essential information to guide our pioneering studies of magnetic relaxation pathways and their relationship to the geometry and electronic structure of Ln SMMs. Ideally we may synthesise a Ln SMM that can operate at liquid nitrogen temperatures.
五十多年来,经济因素推动了电子设备尺寸更小的稳定趋势。然而,农业化的进展速度已经开始停滞,据预测,十年内可能会达到一个稳定期。因此,寻求“自下而上”的替代办法,以与目前的“自上而下”的办法相抗衡,确保技术的持续进步。高密度数据存储的一个有前途的解决方案是使用单分子磁体(SMM)。这些分子可以存储磁信息,因此可以提供尽可能小的器件。镧系元素(Ln)SMM由于其良好的磁性而成为主要候选者,但目前这些SMM只能在昂贵的液氦冷却下工作。Ln SMM保留磁性信息的最高温度取决于Ln的选择、与Ln键合的原子和所得分子几何形状以及磁弛豫途径的竞争。这些因素都可能被控制,但目前的松弛机制仍然知之甚少。有效的弛豫过程可以显着降低磁信息被保留的温度,基于仅从考虑孤立的Ln SMM所预测的,因此必须对这些进行研究以取得进展。我们最近发现,Ln阳离子仅键合到轴向排列的两个五元碳原子环上给出了SMM,已经观察到对于数据存储至关重要的记忆效应。因此,我们的目标是基于此基序合成更复杂的Ln SMM结构,以提供更高的滞后温度。这些系统可以在液氮温度以上运行,在这一点上,它们将成为技术上可行的。这些系统的磁弛豫路径可以在很大的温度范围内进行深入研究。这将使我们能够加深对弛豫机制的影响因素的理解,以便将来我们能够设计出不利于这种过程的Ln SMM,并且可以在更高的温度下存储磁信息。在最近的工作中(Nature,2017,548,439),我们使用我们的Ln SMM设计标准报告了迄今为止报道的最大分子滞后温度(60 K)。这是近25年来最大的一次飞跃(之前的纪录,14 K,是在2011年创造的; 4 K是1993年的初步成就),现在距离在经济上可行的液氮制度下运行只有17 K。我们已经对该系统的设计进行了理论预测,以通过修改碳原子环来进一步提高滞后温度,并在本提案中列出了实现这一目标的合成路线。更雄心勃勃的是,我们的目标是合成“三层德克尔”化合物,其中含有两个镝阳离子和三个小的碳原子环,呈近似圆柱形排列。Ln离子更喜欢高的配位数,因此,只含有五元碳原子环的三重德克尔配合物的合成将是一个了不起的合成成就。这将提供必要的信息,以指导我们的开创性研究磁弛豫途径及其关系的几何形状和电子结构的Ln SMM。理想地,我们可以合成可以在液氮温度下操作的Ln SMM。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isolation and electronic structures of derivatized manganocene, ferrocene and cobaltocene anions.
  • DOI:
    10.1038/s41557-020-00595-w
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Goodwin CAP;Giansiracusa MJ;Greer SM;Nicholas HM;Evans P;Vonci M;Hill S;Chilton NF;Mills DP
  • 通讯作者:
    Mills DP
Isolation of a bent dysprosium bis(amide) single-molecule magnet
弯曲镝双(酰胺)单分子磁体的分离
  • DOI:
    10.26434/chemrxiv-2023-xv0ht
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emerson-King J
  • 通讯作者:
    Emerson-King J
AtomAccess: A predictive tool for molecular design and its application to the targeted synthesis of dysprosium single-molecule magnets
AtomAccess:分子设计的预测工具及其在镝单分子磁体靶向合成中的应用
  • DOI:
    10.26434/chemrxiv-2023-28z84
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gransbury G
  • 通讯作者:
    Gransbury G
Influence of pressure on a dysprosocenium single-molecule magnet.
  • DOI:
    10.1039/d2cc06722f
  • 发表时间:
    2023-02-28
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Parmar, Vijay S. S.;Thiel, Andreas M. M.;Nabi, Rizwan;Gransbury, Gemma K. K.;Norre, Marie S. S.;Evans, Peter;Corner, Sophie C. C.;Skelton, Jonathan M. M.;Chilton, Nicholas F. F.;Mills, David P. P.;Overgaard, Jacob
  • 通讯作者:
    Overgaard, Jacob
f-Block Phospholyl and Arsolyl Chemistry.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Mills其他文献

Halloysite Clay Nanotubes: Characterization, Biocompatibility and Use as Drug Carriers
埃洛石粘土纳米管:表征、生物相容性和作为药物载体的用途
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Vergaro;E. Abdullayev;David Mills;G. Giovinazzo;A. Santino;R. Cingolani;Y. Lvov;S. Leporatti
  • 通讯作者:
    S. Leporatti
Small group teaching: a toolkit for learning
小组教学:学习工具包
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Mills;Patrick Alexander
  • 通讯作者:
    Patrick Alexander
Pediatric Trauma Experience After Transition to a Freestanding Children's Hospital
转为独立儿童医院后的小儿创伤经历
  • DOI:
    10.1097/pec.0000000000001799
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    David Mills;B. Segura;Jen Zaremba;J. Louie
  • 通讯作者:
    J. Louie
P06-045-23 Elucidating Gut Microbial Metabolism Through 13C Labeled Dietary Fiber
  • DOI:
    10.1016/j.cdnut.2023.100881
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Suarez;Carlito Lebrilla;Chad Masarweh;David Mills;Cheng-Yu Weng
  • 通讯作者:
    Cheng-Yu Weng
Is translocation of stock-raiding leopards into a protected area with resident conspecifics an effective management tool?
将掠夺豹子转移到有同种居民的保护区是一种有效的管理工具吗?
  • DOI:
    10.1071/wr10013
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    M. Weilenmann;M. Gusset;David Mills;Tefo Gabanapelo;M. Schiess
  • 通讯作者:
    M. Schiess

David Mills的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Mills', 18)}}的其他基金

Centre for Global Higher Education 2024-2029
全球高等教育中心 2024-2029
  • 批准号:
    ES/Z000033/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Research Grant
Designing Highly Axial Lanthanide Single Molecule Magnets
设计高轴向镧系元素单分子磁体
  • 批准号:
    EP/P002560/1
  • 财政年份:
    2016
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Research Grant
From Low to High Oxidation States - New Oxidative Routes to Lanthanide Multiple Bonds
从低氧化态到高氧化态 - 稀土多重键的新氧化路线
  • 批准号:
    EP/L014416/1
  • 财政年份:
    2014
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Research Grant
Continuing GK-12, Creating Connections: Advancing Knowledge, Learning and Stem Career Opportunities for Rural Louisiana
继续 GK-12,创建联系:为路易斯安那州农村地区推进知识、学习和创造职业机会
  • 批准号:
    0638730
  • 财政年份:
    2007
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Continuing Grant
NERO: Nanoscience Education and Research Outreach
NERO:纳米科学教育和研究推广
  • 批准号:
    0602029
  • 财政年份:
    2006
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Continuing Grant
Louisiana Tech's Graduate K-12 Teaching Fellows Program
路易斯安那理工学院 K-12 研究生教学研究员计划
  • 批准号:
    0231728
  • 财政年份:
    2003
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Continuing Grant
Restructured Physics Learning Environment
重构物理学习环境
  • 批准号:
    9651375
  • 财政年份:
    1996
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Standard Grant
U.S.-Japan Seminar: The State of Teaching Japanese to Scientists and Engineers/May 1994/Pittsburgh, PA
美日研讨会:向科学家和工程师教授日语的状况/1994 年 5 月/宾夕法尼亚州匹兹堡
  • 批准号:
    9315263
  • 财政年份:
    1994
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Standard Grant
Advances in Computer Network Timekeeping
计算机网络计时的进展
  • 批准号:
    9301002
  • 财政年份:
    1993
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Continuing Grant
Support of the National Science Foundation Networking Program
美国国家科学基金会网络计划的支持
  • 批准号:
    8913623
  • 财政年份:
    1989
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Achieving large polarization change induced by magnetic field in molecular crystals
在分子晶体中实现磁场引起的大极化变化
  • 批准号:
    24K17698
  • 财政年份:
    2024
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploration of novel electromagnetic coupling in organic conductors by the combination of molecular arrangement and magnetic ordering
分子排列与磁有序相结合探索有机导体中新型电磁耦合
  • 批准号:
    23K03333
  • 财政年份:
    2023
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of Molecular Spin qubits with Magnetic Metal Complexes
用磁性金属配合物创建分子自旋量子位
  • 批准号:
    23KJ0169
  • 财政年份:
    2023
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Molecular mechanisms of the bacterial magnetic organelle surface proteins that functionalize the magnetosome as a biological magnetic needle
将磁小体功能化为生物磁针的细菌磁性细胞器表面蛋白的分子机制
  • 批准号:
    23H02123
  • 财政年份:
    2023
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Filamentary molecular clouds and molecular cloud cores formed from molecular clouds with strong magnetic fields
强磁场分子云形成的丝状分子云和分子云核
  • 批准号:
    23K03461
  • 财政年份:
    2023
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetic-spin-optical dynamics in molecular materials
分子材料中的磁自旋光动力学
  • 批准号:
    2889176
  • 财政年份:
    2023
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Studentship
Nuclear Magnetic Resonance Studies of Molecular Structure and Dynamics
分子结构和动力学的核磁共振研究
  • 批准号:
    RGPIN-2019-06816
  • 财政年份:
    2022
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Discovery Grants Program - Individual
Fetoplacental Molecular and Metabolic Magnetic Resonance Imaging
胎儿胎盘分子和代谢磁共振成像
  • 批准号:
    RGPIN-2019-05708
  • 财政年份:
    2022
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetic Field-Induced Polarization Change in Molecular Crystals
磁场引起的分子晶体极化变化
  • 批准号:
    22K14694
  • 财政年份:
    2022
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Magnetic Fields, Turbulence, and Star Formation in Molecular Gas Clouds
分子气体云中的磁场、湍流和恒星形成
  • 批准号:
    570152-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 55.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了