Hummingbird: Human-machine integration for biometric authentication
Hummingbird:用于生物识别认证的人机集成
基本信息
- 批准号:EP/R030839/1
- 负责人:
- 金额:$ 36.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We live in a technological age in which we can use our voice as a password to access online banking, and our children can pay for school lunches with a fingerprint. Biometrics, which reflect our physiological or behavioural characteristics, are now common as a way to prove our identity in order to access secure information, services or spaces. Given the important uses associated with biometrics, there is a fundamental need for accuracy in biometric analysis in order to encourage trust amongst both citizens and service providers. The feasibility study undertaken within the HUMMINGBIRD project will provide a human-inspired framework to address both needs.The recent publication of two high profile report converge to make this endeavour timely and necessary. The first is the UK Governmental review on 'Future Identities', which recognised the transformative effect that digital technologies are having on identity. In particular, it noted the myriad of ways we now have to convey our identity, and to have it spoofed. The second is the UK Parliamentary Select Committee review on 'The Current and Future Uses of Biometrics' which highlighted two necessary future steps for biometric analysis: Analysis should draw on behavioural as well as physiological measures; and it should take full advantage of the combination of data across multiple biometrics and across decision makers in order to improve decision-making.To address all factors, we propose an exciting project that will deliver a human-inspired multi-expert, multi-modality framework for biometric analysis. This will satisfy three aims: First, it will deliver enhanced algorithms for automated biometric analysis by incorporating successful strategies used by humans. Second, it will deliver a method of combining decisions made by humans and (enhanced) algorithms in order to boost accuracy. Third, it will deliver the potential to combine multiple biometrics, providing resilience in scenarios in which a single modality may be sub-optimal.The HUMMINGBIRD project team possesses a unique combination of skills to explore this idea and indeed, we build on recently published theoretical work on this topic. In this proposal, we examine two biometrics - face and voice - which reflects the move to combine static physiological measures (facial images) and dynamic behavioural measures (temporal voice samples). We also concentrate on two decision-makers - the human and state-of-the-art automated algorithm - providing direct relevance to scenarios in which the human must be part of the decision-process (such as in forensic decisions). Our work will establish the fundamental performance levels of humans and machine algorithms when recognising faces and voices under optimal and sub-optimal presentation conditions. It will then seek to enhance the machine algorithms through incorporation of human rules and heuristics. Such a move offers the potential to boost accuracy and efficiency by streamlining automated solutions. More importantly, it exploits the fact that humans can outperform machine algorithms under some conditions, such as when trying to recognise a face under dim light, or a voice amidst noise. Finally, our work will apply an innovative data fusion model to combine the decisions of humans and machine algorithms from one biometric, and then from multiple biometrics. This novel and creative element of our work addresses issues of accuracy, disagreement resolution, and resultant confidence in an identity decision, when the situation is inherently uncertain. Arguably, biometrics reflect identity more directly than token or password systems because they rely on who we are rather than what we have or know. As such, biometric analysis is likely to remain a mainstay of identity management. The HUMMINGBIRD project presents real promise as a way to improve accuracy and confidence in that analysis, enabling accuracy of, and trust in, identity management as technology advances.
我们生活在一个技术时代,我们可以用声音作为密码访问网上银行,我们的孩子可以用指纹支付学校午餐。生物识别技术反映了我们的生理或行为特征,现在普遍用作证明我们身份的一种方式,以便访问安全信息,服务或空间。鉴于与生物识别相关的重要用途,生物识别分析的准确性是一个基本需求,以鼓励公民和服务提供商之间的信任。在HummingBird项目范围内进行的可行性研究将提供一个以人为本的框架,以满足这两种需求。最近出版的两份备受瞩目的报告汇集在一起,使这一努力变得及时和必要。首先是英国政府对“未来身份”的审查,该审查认识到数字技术对身份的变革性影响。特别是,它注意到我们现在有无数的方式来传达我们的身份,并有它欺骗。第二个是英国议会特别委员会对“生物识别技术的当前和未来用途”的审查,其中强调了生物识别分析的两个必要的未来步骤:分析应借鉴行为和生理措施;它应该充分利用跨多个生物特征和跨决策者的数据组合,以改善决策。为了解决所有因素,我们提出了一个令人兴奋的项目,将提供一个人类启发的多专家,多模态的生物特征分析框架。这将满足三个目标:首先,它将通过整合人类使用的成功策略,为自动生物特征分析提供增强的算法。其次,它将提供一种方法,将人类和(增强的)算法做出的决策结合起来,以提高准确性。第三,它将提供联合收割机多种生物识别技术的潜力,在单一模式可能不理想的情况下提供弹性。HummingBird项目团队拥有独特的技能组合来探索这一想法,事实上,我们建立在最近发表的关于这一主题的理论工作基础上。在这个建议中,我们研究了两个生物特征-面部和语音-这反映了结合联合收割机静态生理措施(面部图像)和动态行为措施(时间语音样本)的移动。我们还专注于两个决策者-人类和最先进的自动化算法-提供直接相关的场景中,人类必须是决策过程的一部分(如在法医决策)。我们的工作将建立人类和机器算法在最佳和次优呈现条件下识别人脸和声音时的基本性能水平。然后,它将寻求通过合并人类规则和算法来增强机器算法。这一举措有可能通过简化自动化解决方案来提高准确性和效率。更重要的是,它利用了这样一个事实,即人类在某些条件下可以胜过机器算法,例如在昏暗的灯光下识别人脸,或者在噪音中识别声音。最后,我们的工作将应用一种创新的数据融合模型,将人类和机器算法的决策从一个生物特征,然后从多个生物特征联合收割机。我们的工作中这种新颖和创造性的元素解决了准确性,分歧解决以及由此产生的身份决策信心的问题,当情况本质上是不确定的。可以说,生物识别技术比令牌或密码系统更直接地反映身份,因为它们依赖于我们是谁,而不是我们拥有或知道什么。因此,生物特征分析很可能仍然是身份管理的支柱。HUMMINGBIRD项目提供了真实的希望,可以提高分析的准确性和可信度,随着技术的进步,实现身份管理的准确性和可信度。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Human and Machine Vulnerability to Disguise during Voice Matching Tasks
语音匹配任务中人类和机器的伪装漏洞
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Stevenage S.V.
- 通讯作者:Stevenage S.V.
May I Speak Freely? The Difficulty in Vocal Identity Processing Across Free and Scripted Speech
我可以自由发言吗?
- DOI:10.1007/s10919-020-00348-w
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Stevenage S
- 通讯作者:Stevenage S
Supplementary_Evidence_Correlational_Study_R2 - Supplemental material for Sorting through the impact of familiarity when processing vocal identity: Results from a voice sorting task
Supplementary_Evidence_Correlational_Study_R2 - 用于在处理语音识别时对熟悉度的影响进行排序的补充材料:语音分类任务的结果
- DOI:10.25384/sage.10999745
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Stevenage S
- 通讯作者:Stevenage S
Voice Recognition Difficulties in Individuals with Dyslexia or Autistic Traits
患有阅读障碍或自闭症特征的人的语音识别困难
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Stevenage S.V.
- 通讯作者:Stevenage S.V.
Voice recognition in noise: A comparison of human and machine performance
噪声中的语音识别:人类和机器性能的比较
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Symons A.E.
- 通讯作者:Symons A.E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Stevenage其他文献
Sarah Stevenage的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Stevenage', 18)}}的其他基金
SID: An Exploration of Super-Identity
SID:超级身份的探索
- 批准号:
EP/J004995/1 - 财政年份:2011
- 资助金额:
$ 36.74万 - 项目类别:
Research Grant
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 36.74万 - 项目类别:
Discovery Projects
Human-Machine-Interaction Laboratory
人机交互实验室
- 批准号:
528773253 - 财政年份:2024
- 资助金额:
$ 36.74万 - 项目类别:
Major Research Instrumentation
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
- 批准号:
EP/X027732/1 - 财政年份:2024
- 资助金额:
$ 36.74万 - 项目类别:
Research Grant
Resilient Remote Environment Emulation for Human-to-Machine Communication
用于人机通信的弹性远程环境仿真
- 批准号:
DP240101064 - 财政年份:2024
- 资助金额:
$ 36.74万 - 项目类别:
Discovery Projects
HCC: Medium: Optimizing Interactive Machine Learning Tools to Support Plant Scientists using Human Centered Design
HCC:中:优化交互式机器学习工具以支持植物科学家使用以人为本的设计
- 批准号:
2312643 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Standard Grant
CAREER: Foundations of Human-Centered Machine Learning in the Wild
职业:以人为中心的自然机器学习的基础
- 批准号:
2237037 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Continuing Grant
SBIR Phase II: A Novel Human Machine Interface for Assistive Robots
SBIR 第二阶段:辅助机器人的新型人机界面
- 批准号:
2223169 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Cooperative Agreement
'Smart Ventilation' - Novel Real-Time Biosensors and Artificial Intelligence for Optimized Mechanical Ventilation in Human Lungs
“智能通气”——新型实时生物传感器和人工智能,用于优化人肺机械通气
- 批准号:
489877 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Operating Grants
Thermal recognition and control system using self-heating toward human-machine cooperation
利用自加热实现人机协作的热识别和控制系统
- 批准号:
23K13303 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Machine learning for social coordination of autonomous vehicles with human road users
机器学习用于自动驾驶车辆与人类道路使用者的社会协调
- 批准号:
2887445 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Studentship