ARTICULAR: ARtificial inTelligence for Integrated ICT-enabled pharmaceUticaL mAnufactuRing
详细说明:人工智能用于基于 ICT 的集成制药制造
基本信息
- 批准号:EP/R032858/1
- 负责人:
- 金额:$ 250.4万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are considerable challenges around digitalisation in science, engineering and manufacturing in part due to the inherent complexity in the data generated and the challenges in creating useful data sets with the scale required to allow big data approaches to identify patterns, trends and useful knowledge. Whilst other sectors are now realising the power of predictive data analytics; social media platforms, online retailers and advertisers, for example; much of the pharmaceutical manufacturing R&D community struggle with modest, poorly interconnected datasets, which ultimately tend to have short useful lifespans.A result of poor, under-utilised datasets, is that it is largely impossible to avoid "starting at the beginning" for every new drug that needs to be manufactured, which is very costly with new medicines currently doubling in cost every nine years; $1 billion US Dollars currently "buys" only half a new drug so addressing this issue is key for sustainability of the industry and future medicines supply. This project, ARTICULAR, will seek to develop novel machine learning approaches, a branch of artificial intelligence research, to learn from past and present manufacturing data and create new knowledge that aids in crucial manufacturing decisions. Machine learning approaches have been successfully applied to inform aspects of drug discovery, upstream of pharmaceutical manufacturing, where large genomic and molecule screening datasets provide rich information sources for analysis and training artificial intelligences (AI). They have also shown promise in classifying and predicting outcomes from individual unit operations used in medicines manufacturing, such as crystallisation. For the first time, there is an opportunity to use AI approaches to learn from the data and models from across multiple previous development and manufacturing efforts and then address the most commonly encountered problems when manufacturing new pharmaceutical products, which are knowing: (1) the processes and operations to employ; (2) the sensors and measurements to deploy to optimally deliver the product; and (3) the potential process upsets and their future impact on the quality of the medicine manufactured.All of these data and the AI "learning" will be made available via bespoke, personalisable AR and VR interfaces incorporating gesture and voice inputs alongside more traditional approaches such as dashboards. These immersive interfaces will facilitate pharmaceutical manufacturing process design, and visualisation of the complex data being captured and analysed in real-time. Detailed, interactive 3D visualisations of drug forms, products, equipment and manufacturing processes and their associated data will be created which provide intuitive access across the length scales of transformations involved from the drug molecule to final drug product. This will be unique tool, allowing the user to see their work and engage with their data in the context of upstream and downstream processes and performance data. Virtual and Augmented Reality technologies will be used in the lab/plant environment to visualise live data streams for process equipment as the next step in digitalisation. These advanced visualisation tools will add data rich, interactive visualisation to aid researchers in their work, allowing them to focus on the meaning of results and freeing them from menial manual data curation steps.
科学、工程和制造业的数字化面临着相当大的挑战,部分原因是所生成的数据固有的复杂性,以及创建有用的数据集所面临的挑战,这些数据集具有允许大数据方法识别模式、趋势和有用知识所需的规模。虽然其他行业现在正在意识到预测数据分析的力量,例如社交媒体平台,在线零售商和广告商;大多数制药制造研发社区都在与适度的、互连性差的数据集作斗争,这些数据集最终往往具有较短的有用寿命。由于数据集较差、利用不足,对于每一种需要制造的新药,基本上不可能避免“从头开始”,这是非常昂贵的,目前新药的成本每九年翻一番;目前,10亿美元只能“购买”一半的新药,因此解决这一问题是该行业可持续发展和未来药品供应的关键。这个项目,ARTICULAR,将寻求开发新的机器学习方法,人工智能研究的分支,从过去和现在的制造数据中学习,并创造新的知识,帮助关键的制造决策。机器学习方法已成功应用于药物发现、制药上游的各个方面,其中大型基因组和分子筛选数据集为分析和训练人工智能(AI)提供了丰富的信息源。它们还显示出对药物制造中使用的单个单元操作(如结晶)的分类和预测结果的希望。这是第一次有机会使用人工智能方法从以前的多个开发和制造工作中的数据和模型中学习,然后解决制造新药品时最常见的问题,这些问题包括:(1)要采用的流程和操作;(2)要部署的传感器和测量,以最佳地交付产品;(3)要部署的传感器和测量。所有这些数据和人工智能“学习”都将通过定制的、个性化的AR和VR界面提供,这些界面将手势和语音输入与更传统的方法(如仪表板)结合在一起。这些沉浸式界面将促进制药工艺设计,以及实时捕获和分析复杂数据的可视化。将创建药物形式,产品,设备和制造过程及其相关数据的详细,交互式3D可视化,提供从药物分子到最终药物产品的整个转化长度尺度的直观访问。这将是一个独特的工具,允许用户查看他们的工作,并在上游和下游流程和性能数据的背景下使用他们的数据。虚拟现实和增强现实技术将用于实验室/工厂环境,以可视化过程设备的实时数据流,作为数字化的下一步。这些先进的可视化工具将添加数据丰富的交互式可视化,以帮助研究人员进行工作,使他们能够专注于结果的意义,并将他们从繁琐的手动数据管理步骤中解放出来。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Integrated Workflow for Isolation Solvent Selection Using Prediction and Modeling.
- DOI:10.1021/acs.oprd.0c00532
- 发表时间:2021-05-21
- 期刊:
- 影响因子:3.4
- 作者:Ottoboni S;Wareham B;Vassileiou A;Robertson M;Brown CJ;Johnston B;Price CJ
- 通讯作者:Price CJ
Robust Model-Based Reinforcement Learning Control of a Batch Crystallization Process
批量结晶过程的基于模型的鲁棒强化学习控制
- DOI:10.1109/icsc50472.2021.9666494
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Benyahia B
- 通讯作者:Benyahia B
Structural investigation and compression of a co-crystal of indomethacin and saccharin
- DOI:10.1039/c9ce00838a
- 发表时间:2019-08-14
- 期刊:
- 影响因子:3.1
- 作者:Connor, Lauren E.;Vassileiou, Antony D.;Oswald, Iain D. H.
- 通讯作者:Oswald, Iain D. H.
Impact of Paracetamol Impurities on Face Properties: Investigating the Surface of Single Crystals Using TOF-SIMS
扑热息痛杂质对表面性质的影响:使用 TOF-SIMS 研究单晶表面
- DOI:10.1021/acs.cgd.7b01411
- 发表时间:2018
- 期刊:
- 影响因子:3.8
- 作者:Ottoboni S
- 通讯作者:Ottoboni S
Optimal trajectory tracking control of batch crystallization process based on reinforcement learning
基于强化学习的批量结晶过程最优轨迹跟踪控制
- DOI:10.3390/iocc_2020-07731
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Benyahia B
- 通讯作者:Benyahia B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Blair Johnston其他文献
Optimisation of additively manufactured coiled flow inverters for continuous viral inactivation processes
- DOI:
10.1016/j.cherd.2024.11.040 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Maria Cecilia Barrera;Damien Leech;Aleksandar Josifovic;Anita Tolouei;Gareth Alford;Martin J. Wallace;Nicholas Bennett;Ricky Wildman;Derek J. Irvine;Anna Croft;Ender Özcan;Alastair J. Florence;Blair Johnston;John Robertson;Cameron J. Brown - 通讯作者:
Cameron J. Brown
Muscle deficits with normal bone microarchitecture and geometry in young adults with well-controlled childhood-onset Crohn’s disease
患有良好控制的儿童期克罗恩病的年轻人的肌肉缺陷,骨微结构和几何形状正常
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Lewis Steell;Blair Johnston;Dickson Dewantoro;John E. Foster;Daniel R. Gaya;J. Macdonald;M. McMillan;Richard K. Russell;J. Seenan;S. Faisal Ahmed;Stuart R. Gray;Sze Choong Wong - 通讯作者:
Sze Choong Wong
Comparison of renal split function using 1.5 T dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) and nuclear medicine
- DOI:
10.1016/j.crad.2018.07.167 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:
- 作者:
Sau Lee Chang;Pauline Hall Barrientons;Blair Johnston;Maria Rosario Lopez-gonzalez;Giles Roditi - 通讯作者:
Giles Roditi
Blair Johnston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Blair Johnston', 18)}}的其他基金
International Institute for Advanced Pharmaceutical Manufacturing (I2APM)
国际先进药物制造研究所 (I2APM)
- 批准号:
EP/M021661/1 - 财政年份:2015
- 资助金额:
$ 250.4万 - 项目类别:
Research Grant
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 250.4万 - 项目类别:
Fellowship