Maximising Shared Capability of the Ultrafast Spectroscopy Laser Laboratory at Sheffield

最大限度地提高谢菲尔德超快光谱激光实验室的共享能力

基本信息

  • 批准号:
    EP/R042802/1
  • 负责人:
  • 金额:
    $ 25.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The interaction of light with matter is one of the most important areas in modern science. It underpins the emerging technologies of photonics materials that can be used in the communications, computing, displays and lighting devices of the future; the economic impact of this technology sector in the short-to-medium term is predicted to be very large. Interaction of light with matter is also the basis of the conversion of sunlight into energy by photosynthesis and is fundamental to life on earth. Natural photosynthesis is remarkably effective: the goal now is build artificial systems that mimic the key properties of natural photosynthetic systems so that we can, finally, harvest sunlight as an energy source and make a major contribution to mankind's long-term sustainable energy generation that is not fossil-fuel dependent and is not polluting. The tasks of artificial light-harvesting are extensive: not only do we need to construct molecular systems or materials that can capture light effectively, but they need to be able to use it to either generate energy directly (e.g. as electricity in photovoltaic cells), or to drive chemical reactions that provide 'stored energy' as a solar fuel (e.g. by providing energy for conversion of the waste-product CO2 to liquid fuels).Ultrafast laser spectroscopy allows one to examine in many different ways what happens to molecules and materials after they absorb light, both immediately after absorption and on a timescale of years.All research in light/matter interactions - whether it is directed at understanding nature, harnessing energy, or constructing new optical communications devices - requires the ability to measure the extremely fast changes that occur in molecules and materials immediately after light is absorbed. The initial changes take place on a timescale of femtoseconds and may involve movement of electron density, or changes in bond vibrations, which can be detected. Subsequent to this the captured energy 'flows' through the molecular assembly or material, and this movement of charge or energy from place to place - which can occur on timescales from picoseconds to microseconds - can again be visualized in detail. Finally any subsequent chemical changes that may occur on timescales as slow as milliseconds will be visualized. The result will be the ability to monitor exactly what happens in materials and molecular assemblies when the photon of light is absorbed; as the energy or an electron subsequently moves through the material and/or results in structural changes; and as the energy is finally used in various ways from luminescence to triggering chemical reactions.The laboratory that we build is unique in the UK university system as it combines diverse aspects of ultrafast spectroscopy in a single, integrated facility which will enable the comprehensive set of measurements at a single site with a single sample. It will cover a wide range of timescales - from femtoseconds to milliseconds, which spans 11 orders of magnitude; a continuous spectrum of energies from low-energy vibrations to high-energy electronic transitions; and a wide range of detection methods that allow changes in structure and electronic properties to be probed. This will provide researchers both in Sheffield and the wider UK scientific community - with whom the facility is shared - access to state-of-the-art methods to studying light-matter interactions. This unique facility enables a wide range of science projects in areas of national importance and potentially benefit society from technological developments (such as more efficient lighting) and from cleaner, cheaper energy generation using sunlight.Since all our methods are based on cutting-edge technology, they require highly professional scientists to ensure that the equipment works to its full potential, to help diverse groups of scientists to use it to reach out to the very edge of technology and knowledge.
光与物质的相互作用是现代科学中最重要的领域之一。它支撑着可用于未来通信、计算、显示器和照明设备的新兴光电子材料技术;这一技术部门在中短期内的经济影响预计将非常大。光与物质的相互作用也是通过光合作用将阳光转化为能量的基础,也是地球上生命的基础。自然光合作用非常有效:现在的目标是建立模仿自然光合作用系统关键特性的人工系统,以便我们最终能够收获阳光作为能源,并为人类长期、可持续的能源生产做出重大贡献,这种能源不依赖化石燃料,也不会造成污染。人工采光的任务是广泛的:我们不仅需要构建能够有效捕捉光的分子系统或材料,而且它们还需要能够使用它来直接产生能量(例如,作为光伏电池中的电能),或者能够驱动化学反应,作为太阳能燃料提供“储存的能量”(例如,通过提供能量将废物二氧化碳转化为液体燃料)。超快激光光谱学使人们能够以许多不同的方式研究分子和材料吸收光线后发生的事情,光/物质相互作用的所有研究--无论是针对理解自然、利用能量还是构建新的光通信设备--都需要有能力测量在光被吸收后立即发生在分子和材料中的极快变化。最初的变化发生在飞秒的时间尺度上,可能涉及电子密度的移动或键振动的变化,这是可以检测到的。在此之后,捕获的能量通过分子组装或材料流动,这种电荷或能量从一个地方到另一个地方的移动--可以发生在从皮秒到微秒的时间尺度--再次可以被详细地可视化。最后,任何后续的化学变化可能发生在慢至毫秒的时间尺度上都将被可视化。其结果将是能够准确监测当光子被吸收时材料和分子组装中发生的事情;当能量或电子随后通过材料和/或导致结构变化;以及随着能量最终以各种方式使用,从发光到触发化学反应。我们建造的实验室在英国大学系统中是独一无二的,因为它在一个单一、集成的设施中结合了超快光谱的不同方面,这将使单一地点和单一样本能够进行全面的测量。它将涵盖广泛的时间尺度--从飞秒到毫秒,跨越11个数量级;从低能振动到高能电子跃迁的连续能量谱;以及允许探测结构和电子性质变化的各种探测方法。这将为谢菲尔德的研究人员和更广泛的英国科学界--与他们共享该设施--提供研究光与物质相互作用的最先进方法。这一独特的设施使国家重要领域的广泛科学项目得以实施,并可能使社会受益于技术发展(如更高效的照明)和使用阳光的更清洁、更廉价的能源生产。由于我们所有的方法都基于尖端技术,它们需要高度专业的科学家来确保设备充分发挥其潜力,帮助不同的科学家群体利用它来接触技术和知识的最前沿。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A dinuclear ruthenium(ii) phototherapeutic that targets duplex and quadruplex DNA
  • DOI:
    10.1039/c8sc05084h
  • 发表时间:
    2019-03-28
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Archer, Stuart A.;Raza, Ahtasham;Thomas, James A.
  • 通讯作者:
    Thomas, James A.
In optimized rubrene-based nanoparticle blends for photon upconversion, singlet energy collection outcompetes triplet-pair separation, not singlet fission
  • DOI:
    10.1039/d1tc02955j
  • 发表时间:
    2021-10-19
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Bossanyi, David G.;Sasaki, Yoichi;Clark, Jenny
  • 通讯作者:
    Clark, Jenny
Ultrafast Transient Absorption Spectroscopy of Inkjet-Printed Graphene and Aerosol Gel Graphene Films: Effect of Oxygen and Morphology on Carrier Relaxation Dynamics
  • DOI:
    10.1021/acs.jpcc.2c01086
  • 发表时间:
    2022-05-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Auty, Alexander J.;Mansouriboroujeni, Negar;Chauvet, Adrien A. P.
  • 通讯作者:
    Chauvet, Adrien A. P.
Fourier Transforms - Century of Digitalization and Increasing Expectations
傅里叶变换 - 数字化的世纪和不断增长的期望
  • DOI:
    10.5772/intechopen.84897
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.P. Chauvet A
  • 通讯作者:
    A.P. Chauvet A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Weinstein其他文献

Multiple behavioural mechanisms shape development in a highly social cichlid fish
多种行为机制塑造高度社会性慈鲷的发育
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isabela P. Harmon;Emily A. McCabe;Madeleine R. Vergun;Julia Weinstein;Hannah L. Graves;Deijah D. Bradley;Clare M. Boldt;June Lee;Jessica M. Maurice;T. Solomon
  • 通讯作者:
    T. Solomon

Julia Weinstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Weinstein', 18)}}的其他基金

Solar fuels from sustainable feedstock using Earth-abundant catalysts: Can light drive affordable electrocatalysts for fuel production?
使用地球上丰富的催化剂从可持续原料中获取太阳能燃料:光能否驱动经济实惠的电催化剂用于燃料生产?
  • 批准号:
    EP/R001367/1
  • 财政年份:
    2017
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Research Grant
Capability for Science of the Future: Ultrafast Spectroscopy Laser Centre at Sheffield, USLS
未来科学的能力:谢菲尔德大学超快光谱激光中心
  • 批准号:
    EP/L022613/1
  • 财政年份:
    2014
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Research Grant

相似海外基金

AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
  • 批准号:
    2341110
  • 财政年份:
    2024
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Cooperative Agreement
Haptic Shared Control Systems And A Neuroergonomic Approach To Measuring System Trust
触觉共享控制系统和测量系统信任的神经工学方法
  • 批准号:
    EP/Y00194X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Research Grant
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
  • 批准号:
    ES/T014709/2
  • 财政年份:
    2024
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Research Grant
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
  • 批准号:
    10102692
  • 财政年份:
    2024
  • 资助金额:
    $ 25.39万
  • 项目类别:
    EU-Funded
OpenBioMAPS: shared tools for accelerating UK bio-manufacturing
OpenBioMAPS:加速英国生物制造的共享工具
  • 批准号:
    BB/Y007808/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Research Grant
A Secure Hub for Access, Reliability, and Exchange of Data (SHARED)
用于访问、可靠性和数据交换的安全中心(共享)
  • 批准号:
    2346746
  • 财政年份:
    2024
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Standard Grant
Shared Post-Human Imagination: Human-AI Collaboration in Media Creation
共享的后人类想象力:媒体创作中的人机协作
  • 批准号:
    AH/Z50564X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Research Grant
Shared and distinct genetic architecture of autoimmune and hormonal alopecias
自身免疫性脱发和激素性脱发的共同和独特的遗传结构
  • 批准号:
    MR/X030466/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Research Grant
Dynamic Shared Control for Soft Robots
软体机器人的动态共享控制
  • 批准号:
    2349067
  • 财政年份:
    2024
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Standard Grant
CAREER: Learning and Leveraging Conventions in the Design of an Adaptive Haptic Shared Control for Steering a Semi-Automated Vehicle
职业:学习和利用设计用于驾驶半自动车辆的自适应触觉共享控制的惯例
  • 批准号:
    2238268
  • 财政年份:
    2023
  • 资助金额:
    $ 25.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了