REDAEM: Anion-Exchange Membranes for Reverse Electrodialysis
REDAEM:用于反向电渗析的阴离子交换膜
基本信息
- 批准号:EP/R044163/1
- 负责人:
- 金额:$ 54.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The government commitment to reduce emissions (Climate Change Act 2008 and now the Clean Growth Strategy 2017) and the resulting ambitious targets for renewable energy production requires novel approaches towards efficient production of non-intermittent electricity from renewable sources that can compensate for the closure of fossil fuel power plants around the UK. Reverse electrodialysis (RED) is a "blue" non-intermittent energy technology involving salinity gradient energy, with importance to the UK's future renewable energy mix. RED has been relatively neglected to date, hence, a systematic evaluation of its potential based on innovative materials is urgently needed. Electricity is generated when waters of different salinities (saltiness) are mixed inside an electrochemical RED cell stack (can involve industrial waste streams). A recent conservative assessment of global salinity gradient power (SGP) potential indicates that 625 TWh per year of electricity is practically extractable from river mouths globally (3% of global electricity consumption).RED cells contain multiple pairs of anion-exchange membranes (AEM) and cation-exchange membranes (CEM). The materials development aspect of this project will focus on the development of high performance AEMs and their application in RED cells (including those supplied with real-world, non-sterile waters). These will be compared to commercial benchmark AEMs. The project will focus on AEMs because CEMs (intended for RED application) were developed as part of a previous EPSRC grant [EP/I004882/1]; there is also less diversity of chemistries available for CEMs, compared to AEMs, which is why the latter requires a more dedicated research project. A wide range of AEMs will be synthesised using the electron-beam radiation-grafting technique. We will also explore the use of sonochemistry during the grafting stage, both in combination with and without the use of the electron-beam.The RED cell performance data will also be compared to single ion-transport data (experimental and modelling) as well as data from modelling of RED cell engineering configurations. Accurate modelling of the RED stack is crucial in order to estimate the realistic potential of RED in a future UK energy mix. The modelling activities will be further extended to take into consideration the real scalability of the process in terms of potential contribution to the UK energy demand. The integration of data on the availability and locations of fresh water and saline waste streams (e.g. waste streams from industry) with the accurate model of the RED system will produce a precise map of the technology potential at different sites. This activity will then lead to the identification of potential integrations of the process according to the available streams: i.e. once you know where you have fresh water (and how much) you can calculate how much electricity you can actually produce. Furthermore, when an alternative (e.g. industrial) saline waste stream is located close to a fresh water body, this avoids the limitations when using seawater (in terms of coastal location and the magnitude of the salinity gradient).For cost effectiveness, this project will fully utilise membrane characterisation and RED cell testing equipment that have been purchased/established using funds from prior related EPSRC and EU projects. For maximum transparency, all resulting open access publications (CC-BY) will include DOI locators to facilitate open access to the project's (non-IP-protected) raw data. The project will be used to establish new intra-UK and UK-Dutch research collaborations that should lead to additional links to other UK and EU networks.
政府对减排的承诺(2008年《气候变化法》和现在的《2017年清洁增长战略》)以及由此产生的雄心勃勃的可再生能源生产目标要求采用新的方法,利用可再生能源高效生产非间歇性电力,以弥补英国各地化石燃料发电厂的关闭。反向电渗析(RED)是一种“蓝色”非间歇性能源技术,涉及盐度梯度能源,对英国未来的可再生能源组合具有重要意义。到目前为止,RED相对被忽视,因此迫切需要基于创新材料对其潜力进行系统评估。当不同盐度(盐度)的水混合在电化学红细胞堆内(可能涉及工业废水)时,就会产生电力。最近对全球盐度梯度电力(SGP)潜力的保守评估表明,全球每年可从河口提取625太瓦时的电力(占全球电力消费的3%)。RED电池包含多对阴离子交换膜(AEM)和阳离子交换膜(CEM)。该项目的材料开发方面将专注于高性能AEMS的开发及其在红细胞(包括那些供应真实世界、非无菌水的红细胞)中的应用。这些将与商业基准AEMS进行比较。该项目将侧重于AEMS,因为CEMS(用于RED应用)是作为以前EPSRC赠款[EP/I004882/1]的一部分开发的;与AEMS相比,可用于CEMS的化学物质的多样性也较少,这就是为什么后者需要更专门的研究项目。利用电子束辐射接枝技术将合成多种AEMS。我们还将探索在移植阶段使用声化学,包括结合使用和不使用电子束。红细胞性能数据也将与单离子传输数据(实验和建模)以及红细胞工程配置建模的数据进行比较。为了估计红色在未来英国能源组合中的现实潜力,对红色堆栈的准确建模至关重要。建模活动将进一步扩大,以考虑到这一进程在对联合王国能源需求的潜在贡献方面的实际可扩展性。将淡水和盐水废流(如工业废流)的可获得性和位置的数据与红色系统的准确模型相结合,将产生不同地点技术潜力的精确地图。然后,这项活动将根据可用的水流确定该过程的潜在整合:即,一旦您知道哪里有淡水(以及有多少),您就可以计算出您实际可以生产多少电力。此外,当另一种(例如工业)含盐废流靠近淡水水体时,这就避免了使用海水时的限制(就海岸位置和盐度梯度的大小而言)。出于成本效益,该项目将充分利用从以前的EPSRC和欧盟相关项目购买/建立的膜表征和红细胞检测设备。为了最大限度地提高透明度,所有由此产生的开放获取出版物(CC-BY)将包括DOI定位器,以促进对项目(非知识产权保护)原始数据的开放访问。该项目将用于建立新的英国内部和英国-荷兰研究合作,这将导致与其他英国和欧盟网络的更多联系。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Changes in permselectivity of radiation-grafted anion-exchange membranes with different cationic headgroup chemistries are primarily due to water content differences
具有不同阳离子头基化学性质的辐射接枝阴离子交换膜的选择性渗透性的变化主要是由于水含量的差异
- DOI:10.1039/d3ma00082f
- 发表时间:2023
- 期刊:
- 影响因子:5
- 作者:Chakraborty A
- 通讯作者:Chakraborty A
Measuring the alkaline stability of anion-exchange membranes
- DOI:10.1016/j.jelechem.2022.116112
- 发表时间:2022-02-10
- 期刊:
- 影响因子:4.5
- 作者:Haj-Bsoul, Saja;Varcoe, John R.;Dekel, Dario R.
- 通讯作者:Dekel, Dario R.
3D-Zipped Interface: In Situ Covalent-Locking for High Performance of Anion Exchange Membrane Fuel Cells.
3D 压缩界面:原位共价锁定实现阴离子交换膜燃料电池的高性能
- DOI:10.1002/advs.202102637
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Liang X;Ge X;He Y;Xu M;Shehzad MA;Sheng F;Bance-Soualhi R;Zhang J;Yu W;Ge Z;Wei C;Song W;Peng J;Varcoe JR;Wu L;Xu T
- 通讯作者:Xu T
A high-temperature anion-exchange membrane fuel cell with a critical raw material-free cathode
- DOI:10.1016/j.ceja.2021.100153
- 发表时间:2021-11-15
- 期刊:
- 影响因子:0
- 作者:Douglin, John C.;Singh, Ramesh K.;Dekel, Dario R.
- 通讯作者:Dekel, Dario R.
Radiation-grafted cation-exchange membranes: an initial ex situ feasibility study into their potential use in reverse electrodialysis
- DOI:10.1039/c8se00579f
- 发表时间:2019-06
- 期刊:
- 影响因子:5.6
- 作者:Terry R. Willson;I. Hamerton;J. Varcoe;Rachida Bance-Soualhi
- 通讯作者:Terry R. Willson;I. Hamerton;J. Varcoe;Rachida Bance-Soualhi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Varcoe其他文献
Aromatic polyelectrolytes via polyacylation of pre-quarternized monomers for alkaline fuel cells
通过预季化单体的多酰化制备用于碱性燃料电池的芳香族聚电解质
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhenghui Zhang;Liang Wu;John Varcoe;Chuanrun Li;Ai Lien Ong;Simon Poynton;Tongwen Xu - 通讯作者:
Tongwen Xu
Design of NiNC single atom catalyst layers and AEM electrolyzers for stable and efficient COsub2/sub-to-CO electrolysis: Correlating ionomer and cell performance
用于稳定高效二氧化碳转化为一氧化碳电解的 NiNC 单原子催化剂层和 AEM 电解槽的设计:离子聚合物与电池性能的关联
- DOI:
10.1016/j.electacta.2023.142613 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:5.600
- 作者:
Jingyi Wang;Terrence R. Willson;Sven Brückner;Daniel K. Whelligan;Chunning Sun;Liang Liang;Xingli Wang;Peter Strasser;John Varcoe;Wen Ju - 通讯作者:
Wen Ju
John Varcoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Varcoe', 18)}}的其他基金
Next generation anion-exchange membranes (AEM) with covalently-bound antiradical functions for enhanced durability
具有共价结合抗自由基功能的下一代阴离子交换膜 (AEM),可增强耐用性
- 批准号:
EP/T009233/1 - 财政年份:2020
- 资助金额:
$ 54.77万 - 项目类别:
Research Grant
Temperature and Alkali Stable Polymer Electrolytes for Hydrogen and Carbon Dioxide Alkaline Electrolysers
用于氢气和二氧化碳碱性电解槽的温度和碱稳定聚合物电解质
- 批准号:
EP/M005933/1 - 财政年份:2014
- 资助金额:
$ 54.77万 - 项目类别:
Research Grant
Mixed cation- and anion-exchange hybrid membranes for use in fuel cells, redox flow batteries and electrodialysis cells
用于燃料电池、氧化还原液流电池和电渗析电池的混合阳离子和阴离子交换杂化膜
- 批准号:
EP/H025340/1 - 财政年份:2010
- 资助金额:
$ 54.77万 - 项目类别:
Research Grant
Multidisciplinary research into linking renewable energy with utilising atmospheric carbon dioxide and with water desalination
将可再生能源与大气二氧化碳利用和海水淡化联系起来的多学科研究
- 批准号:
EP/I004882/1 - 财政年份:2010
- 资助金额:
$ 54.77万 - 项目类别:
Fellowship
Alkaline Polymer Electrolyte Fuel Cells
碱性聚合物电解质燃料电池
- 批准号:
EP/F027524/1 - 财政年份:2008
- 资助金额:
$ 54.77万 - 项目类别:
Research Grant
相似国自然基金
anion-pi作用导向的分子组装
- 批准号:91127008
- 批准年份:2011
- 资助金额:70.0 万元
- 项目类别:重大研究计划
相似海外基金
ANion Exchange Membrane Electrolysis from Low-grade water sources
低品位水源的阴离子交换膜电解
- 批准号:
10042301 - 财政年份:2022
- 资助金额:
$ 54.77万 - 项目类别:
EU-Funded
High performance anion exchange chromatography coupled to an ion trap mass spectrometer
与离子阱质谱仪联用的高性能阴离子交换色谱
- 批准号:
509483559 - 财政年份:2022
- 资助金额:
$ 54.77万 - 项目类别:
Major Research Instrumentation
Anion Exchange Membrane Water Electrolysis for Clean Hydrogen Production
阴离子交换膜水电解清洁制氢
- 批准号:
DP220103294 - 财政年份:2022
- 资助金额:
$ 54.77万 - 项目类别:
Discovery Projects
Anion exchange membrane water electrolysis for low-cost green hydrogen production (AEM-H2)
阴离子交换膜水电解低成本绿色制氢(AEM-H2)
- 批准号:
EP/W033356/1 - 财政年份:2022
- 资助金额:
$ 54.77万 - 项目类别:
Research Grant
SBIR Phase I: Improving Anion Exchange Membrane Water Electrolyzers via Novel Electrode Geometry
SBIR 第一阶段:通过新型电极几何结构改进阴离子交换膜水电解槽
- 批准号:
2223148 - 财政年份:2022
- 资助金额:
$ 54.77万 - 项目类别:
Standard Grant
Development of sustainable and low cost nitrate selective anion exchange polymers from agricultural wastes
利用农业废物开发可持续且低成本的硝酸盐选择性阴离子交换聚合物
- 批准号:
2007049 - 财政年份:2020
- 资助金额:
$ 54.77万 - 项目类别:
Standard Grant
Next generation anion-exchange membranes (AEM) with covalently-bound antiradical functions for enhanced durability
具有共价结合抗自由基功能的下一代阴离子交换膜 (AEM),可增强耐用性
- 批准号:
EP/T009233/1 - 财政年份:2020
- 资助金额:
$ 54.77万 - 项目类别:
Research Grant
Next generation anion-exchange membranes (AEM) with covalently-bound antiradical functions for enhanced durability
具有共价结合抗自由基功能的下一代阴离子交换膜 (AEM),可增强耐用性
- 批准号:
EP/T00939X/1 - 财政年份:2020
- 资助金额:
$ 54.77万 - 项目类别:
Research Grant
Development of hybrid zeolite with added anion exchange ability
开发具有附加阴离子交换能力的杂化沸石
- 批准号:
20K05586 - 财政年份:2020
- 资助金额:
$ 54.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of Innovative Electrochemical Capacitors Using Anion Exchange Membrane as Polymer Electrolyte for Use in Fuel Cells
使用阴离子交换膜作为聚合物电解质创建用于燃料电池的创新电化学电容器
- 批准号:
19K05596 - 财政年份:2019
- 资助金额:
$ 54.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)