Alkaline Polymer Electrolyte Fuel Cells
碱性聚合物电解质燃料电池
基本信息
- 批准号:EP/F027524/1
- 负责人:
- 金额:$ 37.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The first viable large scale fuel cell systems were the liquid electrolyte alkaline fuel cells developed by Francis Bacon. Until recently the entire space shuttle fleet was powered by such fuel cells. The main difficulties with these fuel cells surrounded the liquid electrolyte, which was difficult to immobilise and suffers from problems due to the formation of low solubility carbonate species. Subsequent material developments led to the introduction of proton-exchange membranes (PEMs e.g. Nafion(r)) and the development of the well-known PEMFC. Cost is a major inhibitor to commercial uptake of PEMFCs and is localised on 3 critical components: (1) Pt catalysts (loadings still high despite considerable R&D); (2) the PEMs; and (3) bipolar plate materials (there are few inexpensive materials which survive contact with Nafion, a superacid). Water balance within PEMFCs is difficult to optimise due to electro-osmotic drag. Finally, PEM-based direct methanol fuel cells (DMFCs) exhibit reduced performances due to migration of methanol to the cathode (voltage losses and wasted fuel).Recent advances in materials science and chemistry has allowed the production of membrane materials and ionomers which would allow the development of the alkaline-equivalent to PEMs. The application of these alkaline anion-exchange membranes (AAEMs) promises a quantum leap in fuel cell viability. The applicant team contains the world-leaders in the development of this innovative technology. Such fuel cells (conduction of OH- anions rather than protons) offer a number of significant advantages:(1) Catalysis of fuel cell reactions is faster under alkaline conditions than acidic conditions - indeed non-platinum catalysts perform very favourably in this environment e.g. Ag for oxygen reduction.(2) Many more materials show corrosion resistance in alkaline than in acid environments. This increases the number and chemistry of materials which can be used (including cheap, easy stamped and thin metal bipolar plate materials).(3) Non-fluorinated ionomers are feasible and promise significant membrane cost reductions.(4) Water and ionic transport within the OH-anion conducting electrolytes is favourable electroosmotic drag transports water away from the cathode (preventing flooding on the cathode, a major issue with PEMFCs and DMFCs). This process also mitigates the 'crossover' problem in DMFCs.This research programme involves the development of a suite of materials and technology necessary to implement the alkaline polymer electrolyte membrane fuel cells (APEMFC). This research will be performed by a consortium of world leading materials scientists, chemists and engineers, based at Imperial College London, Cranfield University, University of Newcastle and the University of Surrey. This team, which represents one of the best that can be assembled to undertake such research, embodies a multiscale understanding on experimental and theoretical levels of all aspects of fuel cell systems, from fundamental electrocatalysis to the stack level, including diagnostic approaches to assess those systems. The research groups have already explored some aspects of APEMFCs and this project will undertake the development of each aspect of the new technology in an integrated, multi-pronged approach whilst communicating their ongoing results to the members of a club of relevant industrial partners. The extensive opportunities for discipline hopping and international-level collaborations will be fully embraced. The overall aim is to develop membrane materials, catalysts and ionomers for APEMFCs and to construct and operate such fuel cells utilising platinum-free electrocatalysts. The proposed programme of work is adventurous: however, risks have been carefully assessed alongside suitable mitigation strategies (the high risk components promise high returns but have few dependencies). Success will lead to the U.K. pioneering a new class of clean energy conversion technology.
第一个可行的大规模燃料电池系统是由弗朗西斯培根开发的液体电解质碱性燃料电池。直到最近,整个航天飞机舰队都是由这种燃料电池供电的。这些燃料电池的主要困难在于液体电解质,其难以固定并且由于形成低溶解度碳酸盐物质而存在问题。随后的材料开发导致了质子交换膜(PEM,例如Nafion)的引入和众所周知的PEMFC的开发。成本是PEMFC商业化的主要抑制因素,并局限于3个关键组件:(1)Pt催化剂(尽管进行了大量研发,但负载量仍然很高);(2)PEM;以及(3)双极板材料(很少有廉价材料能够与Nafion(一种超强酸)接触)。由于电渗阻力,PEMFC内的水平衡难以优化。最后,基于PEM的直接甲醇燃料电池(DMFC)表现出降低的性能,由于迁移的甲醇到阴极(电压损失和浪费的燃料)。最近的进展,在材料科学和化学允许生产的膜材料和离聚物,这将允许开发的碱等效的PEM。这些碱性阴离子交换膜(AAEM)的应用有望在燃料电池的可行性上实现飞跃。申请人团队包含开发这项创新技术的世界领导者。这种燃料电池(传导OH-阴离子而不是质子)提供了许多显著的优点:(1)燃料电池反应的催化在碱性条件下比在酸性条件下更快-实际上非铂催化剂在这种环境中表现非常有利,例如Ag用于氧还原。(2)更多的材料在碱性环境中比在酸性环境中显示出耐腐蚀性。这增加了可以使用的材料的数量和化学性质(包括便宜的、容易冲压的和薄的金属双极板材料)。(3)非氟化离聚物是可行的,并承诺显着降低膜成本。(4)OH-阴离子传导电解质内的水和离子传输是有利的,电渗拖曳将水从阴极传输走(防止阴极上的溢流,这是PEMFC和DMFC的主要问题)。这一过程也缓解了DMFCs中的“交叉”问题。该研究计划涉及开发一套实现碱性聚合物电解质膜燃料电池(APEMFC)所需的材料和技术。这项研究将由一个由世界领先的材料科学家、化学家和工程师组成的财团进行,该财团位于伦敦帝国理工学院、克兰菲尔德大学、纽卡斯尔大学和萨里大学。该团队代表了可以进行此类研究的最佳团队之一,体现了对燃料电池系统各个方面的实验和理论水平的多尺度理解,从基本的电催化到堆栈水平,包括评估这些系统的诊断方法。研究小组已经探索了APEMFCs的某些方面,该项目将以综合,多管齐下的方法开发新技术的各个方面,同时将其持续的结果传达给相关工业合作伙伴俱乐部的成员。学科跳跃和国际级合作的广泛机会将得到充分的接受。总体目标是开发用于APEMFC的膜材料、催化剂和离聚物,并利用无铂电催化剂构建和操作这种燃料电池。拟议的工作方案是冒险的:然而,风险已经过仔细评估,同时采取了适当的缓解战略(高风险部分承诺高回报,但依赖性很小)。成功将导致英国。开创了一种新的清洁能源转换技术。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alkaline Anion Exchange Membranes for Fuel Cells- A Patent Review
用于燃料电池的碱性阴离子交换膜 - 专利审查
- DOI:10.2174/2211334711104020093
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Zeng R
- 通讯作者:Zeng R
An experimental study on the placement of reference electrodes in alkaline polymer electrolyte membrane fuel cells
碱性聚合物电解质膜燃料电池参比电极放置的实验研究
- DOI:10.1016/j.electacta.2010.08.032
- 发表时间:2010
- 期刊:
- 影响因子:6.6
- 作者:Zeng R
- 通讯作者:Zeng R
Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells
- DOI:10.1016/j.ssi.2009.01.019
- 发表时间:2010-02
- 期刊:
- 影响因子:3.2
- 作者:Simon D. Poynton;Jamie P. Kizewski;R. Slade;J. Varcoe
- 通讯作者:Simon D. Poynton;Jamie P. Kizewski;R. Slade;J. Varcoe
A novel reference electrode for application in alkaline polymer electrolyte membrane fuel cells
- DOI:10.1016/j.elecom.2010.03.043
- 发表时间:2010-06
- 期刊:
- 影响因子:5.4
- 作者:R. Zeng;Simon D. Poynton;Jamie P. Kizewski;R. Slade;J. Varcoe
- 通讯作者:R. Zeng;Simon D. Poynton;Jamie P. Kizewski;R. Slade;J. Varcoe
Membrane and Electrode Materials for Alkaline Membrane Fuel Cells
- DOI:10.1149/1.2982023
- 发表时间:2008-10
- 期刊:
- 影响因子:3.7
- 作者:J. Varcoe;Marion Beillard;D. Halepoto;Jamie P. Kizewski;Simon D. Poynton;R. Slade
- 通讯作者:J. Varcoe;Marion Beillard;D. Halepoto;Jamie P. Kizewski;Simon D. Poynton;R. Slade
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Varcoe其他文献
Aromatic polyelectrolytes via polyacylation of pre-quarternized monomers for alkaline fuel cells
通过预季化单体的多酰化制备用于碱性燃料电池的芳香族聚电解质
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhenghui Zhang;Liang Wu;John Varcoe;Chuanrun Li;Ai Lien Ong;Simon Poynton;Tongwen Xu - 通讯作者:
Tongwen Xu
Design of NiNC single atom catalyst layers and AEM electrolyzers for stable and efficient COsub2/sub-to-CO electrolysis: Correlating ionomer and cell performance
用于稳定高效二氧化碳转化为一氧化碳电解的 NiNC 单原子催化剂层和 AEM 电解槽的设计:离子聚合物与电池性能的关联
- DOI:
10.1016/j.electacta.2023.142613 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:5.600
- 作者:
Jingyi Wang;Terrence R. Willson;Sven Brückner;Daniel K. Whelligan;Chunning Sun;Liang Liang;Xingli Wang;Peter Strasser;John Varcoe;Wen Ju - 通讯作者:
Wen Ju
John Varcoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Varcoe', 18)}}的其他基金
Next generation anion-exchange membranes (AEM) with covalently-bound antiradical functions for enhanced durability
具有共价结合抗自由基功能的下一代阴离子交换膜 (AEM),可增强耐用性
- 批准号:
EP/T009233/1 - 财政年份:2020
- 资助金额:
$ 37.14万 - 项目类别:
Research Grant
REDAEM: Anion-Exchange Membranes for Reverse Electrodialysis
REDAEM:用于反向电渗析的阴离子交换膜
- 批准号:
EP/R044163/1 - 财政年份:2018
- 资助金额:
$ 37.14万 - 项目类别:
Research Grant
Temperature and Alkali Stable Polymer Electrolytes for Hydrogen and Carbon Dioxide Alkaline Electrolysers
用于氢气和二氧化碳碱性电解槽的温度和碱稳定聚合物电解质
- 批准号:
EP/M005933/1 - 财政年份:2014
- 资助金额:
$ 37.14万 - 项目类别:
Research Grant
Mixed cation- and anion-exchange hybrid membranes for use in fuel cells, redox flow batteries and electrodialysis cells
用于燃料电池、氧化还原液流电池和电渗析电池的混合阳离子和阴离子交换杂化膜
- 批准号:
EP/H025340/1 - 财政年份:2010
- 资助金额:
$ 37.14万 - 项目类别:
Research Grant
Multidisciplinary research into linking renewable energy with utilising atmospheric carbon dioxide and with water desalination
将可再生能源与大气二氧化碳利用和海水淡化联系起来的多学科研究
- 批准号:
EP/I004882/1 - 财政年份:2010
- 资助金额:
$ 37.14万 - 项目类别:
Fellowship
相似国自然基金
大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
- 批准号:11602270
- 批准年份:2016
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
- 批准号:51302054
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
- 批准号:51105345
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis of alkaline polymer electrolyte electrolyzers
碱性聚合物电解质电解槽分析
- 批准号:
527895-2018 - 财政年份:2018
- 资助金额:
$ 37.14万 - 项目类别:
University Undergraduate Student Research Awards
Nanoparticulate mixed metal oxides as electrode materials for Alkaline Polymer Electrolyte Membrane Fuel Cells (APEMFCs)
纳米颗粒混合金属氧化物作为碱性聚合物电解质膜燃料电池(APEMFC)的电极材料
- 批准号:
EP/G009929/2 - 财政年份:2009
- 资助金额:
$ 37.14万 - 项目类别:
Research Grant
Alkaline Polymer Electrolyte Fuel Cells
碱性聚合物电解质燃料电池
- 批准号:
EP/F026633/1 - 财政年份:2008
- 资助金额:
$ 37.14万 - 项目类别:
Research Grant
Alkaline Polymer Electrolyte Fuel Cells
碱性聚合物电解质燃料电池
- 批准号:
EP/F02858X/1 - 财政年份:2008
- 资助金额:
$ 37.14万 - 项目类别:
Research Grant
Alkaline Polymer Electrolyte Fuel Cells
碱性聚合物电解质燃料电池
- 批准号:
EP/F035764/1 - 财政年份:2008
- 资助金额:
$ 37.14万 - 项目类别:
Research Grant
Nanoparticulate mixed metal oxides as electrode materials for Alkaline Polymer Electrolyte Membrane Fuel Cells (APEMFCs)
纳米颗粒混合金属氧化物作为碱性聚合物电解质膜燃料电池(APEMFC)的电极材料
- 批准号:
EP/G009929/1 - 财政年份:2008
- 资助金额:
$ 37.14万 - 项目类别:
Research Grant
SBIR Phase I: Eliminating Critical Failure Mechanisms and Increasing Performance Development in Alkaline Fuel Cells by using a Solid Polymer Electrolyte
SBIR 第一阶段:通过使用固体聚合物电解质消除碱性燃料电池的关键故障机制并提高性能开发
- 批准号:
0740059 - 财政年份:2008
- 资助金额:
$ 37.14万 - 项目类别:
Standard Grant
MEAs for Alkaline Polymer Electrolyte Fuel Cells
用于碱性聚合物电解质燃料电池的 MEA
- 批准号:
200052 - 财政年份:2007
- 资助金额:
$ 37.14万 - 项目类别:
Collaborative R&D
Development of polymer alkaline electrolyte membrane fuel cell (PAEMFC) based on alkali-doped Polybenzimidazole (PBI)
基于碱掺杂聚苯并咪唑(PBI)的聚合物碱性电解质膜燃料电池(PAEMFC)的开发
- 批准号:
336775-2006 - 财政年份:2007
- 资助金额:
$ 37.14万 - 项目类别:
Strategic Projects - Group
Development of polymer alkaline electrolyte membrane fuel cell (PAEMFC) based on alkali-doped Polybenzimidazole (PBI)
基于碱掺杂聚苯并咪唑(PBI)的聚合物碱性电解质膜燃料电池(PAEMFC)的开发
- 批准号:
336775-2006 - 财政年份:2006
- 资助金额:
$ 37.14万 - 项目类别:
Strategic Projects - Group