Probing Multiscale Complex Multiphase Flows with Positrons for Engineering and Biomedical Applications

用正电子探测多尺度复杂多相流,用于工程和生物医学应用

基本信息

  • 批准号:
    EP/R045046/1
  • 负责人:
  • 金额:
    $ 734.59万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    未结题

项目摘要

A vital challenge for modern engineering is the modelling of the multiscale complex particle-liquid flows at the heart of numerous industrial and physiological processes. Industries dependent on such flows include food, chemicals, consumer goods, pharmaceuticals, oil, mining, river engineering, construction, power generation, biotechnology and medicine. Despite this large range of application areas, industrial practice and processes and clinical practice are neither efficient nor optimal because of a lack of fundamental understanding of the complex, multiscale phenomena involved. Flows may be turbulent or viscous and the carrier fluid may exhibit complex non-Newtonian rheology. Particles have various shapes, sizes, densities, bulk and surface properties. The ability to understand multiscale particle-liquid flows and predict them reliably would offer tremendous economic, scientific and societal benefits to the UK. Our fundamental understanding has so far been restricted by huge practical difficulties in imaging such flows and measuring their local properties. Mixtures of practical interest are often concentrated and opaque so that optical flow visualisation is impossible. We propose to overcome this problem using the technique of positron emission particle tracking (PEPT) which relies on radiation that penetrates opaque materials. We will advance the fundamental physics of multiscale particle-liquid flows in engineering and physiology through an exceptional experimental and theoretical effort, delivering a step change in our ability to image, model, analyse, and predict these flows. We will develop: (i) unique transformative Lagrangian PEPT diagnostic methodology for engineering and physiological flows; and (ii) innovative Lagrangian theories for the analysis of the phenomena uncovered by our measurements.The University of Birmingham Positron Imaging Centre, where the PEPT technique was invented, is unique in the world in its use of positron-emitting radioactive tracers to study engineering processes. In PEPT, a single radiolabelled particle is used as a flow follower and tracked through positron detection. Thus, each component in a multiphase particle-liquid flow can be labelled and its behaviour observed. Compared with leading optical laser techniques (e.g. LDV, PIV), PEPT has the enormous and unique advantage that it can image opaque fluids, and fluids inside opaque apparatus and the human body. To make the most of this and image fast, complex multiphase and multiscale flows in aqueous systems, improved tracking sensitivity and accuracy, dedicated new radiotracers and simultaneous tracking of multiple tracers must be developed, and new theoretical frameworks must be devised to analyse and interpret the data. By delivering this, we will enable multiscale complex particle-liquid flows to be studied with unprecedented detail and resolution in regimes and configurations hitherto inaccessible to any available technique. The benefits will be far-reaching since the range of applications of PEPT in engineering and medicine is extremely wide. This multidisciplinary Programme harnesses the synergy between world-leading centres at Birmingham (chemical engineering, physics), Edinburgh (applied maths) and King's College London (PET chemistry, biomedical engineering) to develop unique PEPT diagnostic tools, and to study experimentally and theoretically outstanding multiscale multiphase flow problems which can only be tackled by these tools. The advances of the Programme include: a novel microPEPT device designed to image microscale flows, and a novel medical PEPT validated in small animals for translation to humans. The investigators' combined strengths and the accompanying wide-ranging industrial collaborations, will ensure that this Programme leads to a paradigm-shift in complex multiphase flow research.
现代工程的一个重要挑战是在许多工业和生理过程的心脏多尺度复杂的颗粒-液体流动的建模。依赖这种流动的行业包括食品、化学品、消费品、制药、石油、采矿、河流工程、建筑、发电、生物技术和医药。尽管有如此广泛的应用领域,但由于缺乏对所涉及的复杂多尺度现象的基本理解,工业实践和工艺以及临床实践既不高效也不理想。流动可以是湍流的或粘性的,并且载体流体可以表现出复杂的非牛顿流变学。颗粒具有各种形状、尺寸、密度、体积和表面性质。了解多尺度颗粒-液体流动并对其进行可靠预测的能力将为英国提供巨大的经济,科学和社会效益。到目前为止,我们的基本理解受到了成像这种流动和测量其局部性质的巨大实际困难的限制。实际感兴趣的混合物通常是浓缩的和不透明的,使得光流可视化是不可能的。我们建议使用正电子发射粒子跟踪(PEPT)技术来克服这个问题,该技术依赖于穿透不透明材料的辐射。我们将通过特殊的实验和理论努力,推进工程和生理学中多尺度粒子-液体流动的基础物理学,使我们成像,建模,分析和预测这些流动的能力发生变化。我们将开发:伯明翰大学正电子成像中心是发明PEPT技术的地方,该中心在世界上独一无二地使用正电子放射性示踪剂来研究工程过程。在PEPT中,单个放射性标记的粒子被用作流动跟随器,并通过正电子检测进行跟踪。因此,可以标记多相颗粒-液体流中的每个组分并观察其行为。与领先的光学激光技术(如LDV,PIV)相比,PEPT具有巨大而独特的优势,它可以成像不透明的流体,以及不透明仪器和人体内的流体。为了充分利用这一点,快速成像,水系统中复杂的多相和多尺度流动,提高跟踪灵敏度和准确性,必须开发专用的新放射性示踪剂和同时跟踪多个示踪剂,必须设计新的理论框架来分析和解释数据。通过提供这一点,我们将使多尺度复杂的颗粒-液体流动研究前所未有的细节和分辨率的制度和配置迄今无法获得任何可用的技术。由于PEPT在工程和医学中的应用范围非常广泛,因此其好处将是深远的。这个多学科计划利用伯明翰(化学工程,物理学),爱丁堡(应用数学)和伦敦国王学院(PET化学,生物医学工程)世界领先的中心之间的协同作用,开发独特的PEPT诊断工具,并研究实验和理论上突出的多尺度多相流问题,这些问题只能通过这些工具来解决。该计划的进展包括:一种新型的微型PEPT装置,旨在对微尺度流动进行成像,以及一种新型的医用PEPT,在小动物身上得到验证,可用于人类。研究人员的综合实力和随之而来的广泛的工业合作,将确保该计划导致复杂多相流研究的范式转变。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian comparison of stochastic models of dispersion
离散随机模型的贝叶斯比较
  • DOI:
    10.1017/jfm.2022.472
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Brolly M
  • 通讯作者:
    Brolly M
Computational fluid dynamic modelling to determine the hemodynamic effects of implanting a transcatheter mitral valve within the left ventricle
计算流体动力学模型确定左心室内植入经导管二尖瓣的血流动力学效应
Individual Patient-specific Planning of Minimally Invasive Transcatheter Intervention for Heart Valve Disease.
针对心脏瓣膜疾病的微创经导管干预的个体患者特定计划。
  • DOI:
    10.1016/j.eclinm.2019.01.002
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    De Vecchi A
  • 通讯作者:
    De Vecchi A
Left ventricular outflow obstruction predicts increase in systolic pressure gradients and blood residence time after transcatheter mitral valve replacement.
  • DOI:
    10.1038/s41598-018-33836-7
  • 发表时间:
    2018-10-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    De Vecchi A;Marlevi D;Nordsletten DA;Ntalas I;Leipsic J;Bapat V;Rajani R;Niederer SA
  • 通讯作者:
    Niederer SA
Quantifying Deterministic Chaos in Particle-Liquid Flows via Lagrangian Particle Tracking
通过拉格朗日粒子跟踪量化粒子液体流中的确定性混沌
  • DOI:
    10.1115/1.0001687v
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barigou M
  • 通讯作者:
    Barigou M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mostafa Barigou其他文献

Synthesis and sup68/supGa radiolabelling of calcium alginate beads for positron emission particle tracking (PEPT) applications
  • DOI:
    10.1016/j.ces.2022.118159
  • 发表时间:
    2022-12-31
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Juan Pellico;Ananda Jadhav;Laurence Vass;Agathe Bricout;Mostafa Barigou;Paul K. Marsden;Rafael T.M. de Rosales
  • 通讯作者:
    Rafael T.M. de Rosales
Synthesis and <sup>68</sup>Ga radiolabelling of calcium alginate beads for positron emission particle tracking (PEPT) applications
  • DOI:
    10.1016/j.ces.2022.118159
  • 发表时间:
    2022-12-31
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Pellico;Ananda Jadhav;Laurence Vass;Agathe Bricout;Mostafa Barigou;Paul K. Marsden;Rafael T.M. de Rosales
  • 通讯作者:
    Rafael T.M. de Rosales
Multiscale analysis of turbulence in horizontal pipes: Liquid and particle-liquid flow investigation
水平管道湍流的多尺度分析:液体和颗粒-液体流动研究
  • DOI:
    10.1063/5.0193241
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Chiya Savari;Mostafa Barigou
  • 通讯作者:
    Mostafa Barigou
Qualitative models of particle de-agglomeration
  • DOI:
    10.1016/j.powtec.2009.05.011
  • 发表时间:
    2009-10-25
  • 期刊:
  • 影响因子:
  • 作者:
    Dominique Chu;Shih-Chi Chu;Mostafa Barigou
  • 通讯作者:
    Mostafa Barigou

Mostafa Barigou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mostafa Barigou', 18)}}的其他基金

A HOLISTIC FRAMEWORK FOR HYBRID MODELLING OF SOLID-LIQUID FLOWS
固液流混合建模的整体框架
  • 批准号:
    EP/N033698/1
  • 财政年份:
    2017
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Research Grant
FLOW OF GAS-LIQUID FOAMS IN NARROW COMPLEX GEOMETRIES
狭窄复杂几何形状中气液泡沫的流动
  • 批准号:
    EP/N002075/1
  • 财政年份:
    2016
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Research Grant
UNDERSTANDING THE STABILITY AND PROPERTIES OF BULK NANOBUBBLES
了解块状纳米气泡的稳定性和特性
  • 批准号:
    EP/L025108/1
  • 财政年份:
    2015
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Research Grant

相似海外基金

RII Track-4:NSF: Enhanced Multiscale Approaches for Simulations of Multicomponent Fluids with Complex Interfaces using Fluctuating Hydrodynamics
RII Track-4:NSF:使用脉动流体动力学模拟具有复杂界面的多组分流体的增强多尺度方法
  • 批准号:
    2346036
  • 财政年份:
    2023
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Standard Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
  • 批准号:
    2238359
  • 财政年份:
    2023
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Standard Grant
Multiscale modelling of systems with complex microscale detail
具有复杂微尺度细节的系统的多尺度建模
  • 批准号:
    DP220103156
  • 财政年份:
    2023
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Discovery Projects
Multiscale numerical modelling of high-buoyancy plumes in complex terrain
复杂地形高浮力羽流的多尺度数值模拟
  • 批准号:
    567595-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Postdoctoral Fellowships
RII Track-4:NSF: Enhanced Multiscale Approaches for Simulations of Multicomponent Fluids with Complex Interfaces using Fluctuating Hydrodynamics
RII Track-4:NSF:使用脉动流体动力学模拟具有复杂界面的多组分流体的增强多尺度方法
  • 批准号:
    2131996
  • 财政年份:
    2022
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Standard Grant
Collaborative Research: A Workshop on Pre-emergence and the Predictions of Rare Events in Multiscale, Complex, Dynamical Systems
协作研究:多尺度、复杂、动态系统中出现前和罕见事件的预测研讨会
  • 批准号:
    2114503
  • 财政年份:
    2021
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Standard Grant
Collaborative Research: A Workshop on Pre-emergence and the Predictions of Rare Events in Multiscale, Complex, Dynamical Systems
协作研究:多尺度、复杂、动态系统中出现前和罕见事件的预测研讨会
  • 批准号:
    2114529
  • 财政年份:
    2021
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Standard Grant
Collaborative Research: A Workshop on Pre-emergence and the Predictions of Rare Events in Multiscale, Complex, Dynamical Systems
协作研究:多尺度、复杂、动态系统中出现前和罕见事件的预测研讨会
  • 批准号:
    2114393
  • 财政年份:
    2021
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Standard Grant
Collaborative Research: A Workshop on Pre-emergence and the Predictions of Rare Events in Multiscale, Complex, Dynamical Systems
协作研究:多尺度、复杂、动态系统中出现前和罕见事件的预测研讨会
  • 批准号:
    2114651
  • 财政年份:
    2021
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
  • 批准号:
    2053284
  • 财政年份:
    2021
  • 资助金额:
    $ 734.59万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了