Photonic Phase Conjugation Systems (PHOS)

光子相位共轭系统 (PHOS)

基本信息

  • 批准号:
    EP/S003436/1
  • 负责人:
  • 金额:
    $ 114.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The remarkable success of the internet is unquestioned, touching all aspects of our daily lives and commerce. This success is fundamentally underpinned by the tremendous capacity of unseen underground and undersea optical fibre cables and the technologies associated with them. Indeed, the initial surge in web usage in the mid 1990s coincides with the commissioning of the first optically amplified transatlantic cable network, TAT12/13 that allowed ready access to information otherwise inaccessible. Similarly, the remarkable growth of social media is supported by the introduction of optical fibres into data centres, allowing their tremendous growth. Exponential growth has been a characteristic of data communications since their first introduction in the 1970's and has been fuelled by the gradual introduction of radical technologies, such as optical amplification, wavelength-division multiplexing and coherent modulation. All of these technologies are today routinely deployed and it is widely acknowledged that fibres are becoming full. The limit to fibre capacity has its origin in the fact that the intense signals are significantly distorted by nonlinearly (a similar effect to overdriving loudspeakers). This distortion limits the maximum amount of information which may be transmitted across and optical fibre link, and unless combated, the nonlinear response will result in a capacity crunch, limiting access to the internet to today's levels. Faced with the ongoing exponential growth in demand, unless these restrictions are lifted many parallel systems will be required, resulting in exponentially increasing energy consumption, until the cost of this resource becomes prohibitive and finally curtails growth. Only one technology, optical phase conjugation (acting like a mirror for colours), has been shown to offer the prospect of supporting continued internet growth without the need for widespread use of multiple fibres and the associated growth in energy consumption. Very much like Newton's Prisms, optical phase conjugation allows the distortion of one fibre (analogous to spectral spreading in Newton's prisms) to be compensated by a second identical fibre. In PHOS, we will - Optimise the devices which perform this conjugation, both in terms of the assessment of fundamental nonlinear materials and in terms of optimised sub-system configuration.- Demonstrate orders of magnitude increase in the capabilities of optical fibres for both practical point-to-point links with non-uniform span lengths and for optical networks with a plethora of diverse routes. - Verify that the use of optical phase conjugation is cost effective, both in terms of reducing the cost of a network deployment compared to existing products and in terms of enhancing the service provided to customers through higher capacity with lower latency. Furthermore, as optical phase conjugation will transform the capabilities of the network, PHOS will work to remove bottlenecks within the network transmitters and receivers, increasing their performance by an order of magnitude, resulting in 10 times faster connections. The approach of compensating impairments in the optical domain, combined with simplified digital signal processing and enhanced exploitation of fibre bandwidth will reduce the cost, size and power consumption associated with providing 10's of Tbit/s of capacity per optical fibre. If successful, PHOS will enable massively increased data capacities from the employment of Optical Phase Conjugation, giving the UK the most advanced optical communication network and a strong position to become a leading supplier of the technology worldwide.
互联网的巨大成功是毋庸置疑的,它触及了我们日常生活和商业的方方面面。这一成功的根本基础是看不见的地下和海底光缆的巨大容量以及与之相关的技术。事实上,1990年代中期网络使用量的最初激增恰逢第一个光放大跨大西洋电缆网络TAT12/13投入使用,使人们能够随时访问否则无法访问的信息。同样,社交媒体的显著增长也得益于将光纤引入数据中心,从而实现了它们的巨大增长。自20世纪70年代S首次引入数据通信以来,指数增长一直是数据通信的一个特征,并因光学放大、波分复用和相干调制等激进技术的逐步引入而得到推动。所有这些技术今天都是常规部署的,人们普遍认为纤维正在变得饱满。光纤容量的限制源于这样一个事实,即强烈的信号被非线性严重失真(这与超速扬声器的影响类似)。这种失真限制了可通过光纤链路传输的最大信息量,除非与之抗衡,否则非线性反应将导致容量紧缩,将互联网接入限制到今天的水平。面对持续不断的需求指数增长,除非取消这些限制,否则将需要许多并行系统,导致能源消耗指数级增长,直到这种资源的成本变得令人望而却步,最终抑制增长。只有一种技术--光学相位共轭(充当颜色的镜子)--被证明有可能支持互联网的持续增长,而不需要广泛使用多种光纤和相关的能源消耗增长。与牛顿棱镜非常相似的是,光学相位共轭允许一根光纤的失真(类似于牛顿棱镜中的频谱扩展)被另一根相同的光纤补偿。在PHOS中,我们将在基本非线性材料的评估和优化的子系统配置方面对执行这种共轭的设备进行优化。-展示光纤对跨距长度不均匀的实际点对点链路和具有过多不同路由的光网络的能力增加了数量级。-验证光纤相位共轭的使用是否具有成本效益,无论是在与现有产品相比降低网络部署成本方面,还是在通过更高的容量和更低的延迟来增强向客户提供的服务方面。此外,由于光相位共轭将改变网络的能力,PHOS将致力于消除网络发送器和接收器中的瓶颈,将其性能提高一个数量级,从而使连接速度提高10倍。补偿光域中的损伤的方法与简化的数字信号处理和增强的光纤带宽开发相结合,将降低与提供10‘S/S的每根光纤的容量相关的成本、尺寸和功耗。如果成功,PHOS将通过采用光学相位共轭而大幅增加数据容量,使英国拥有最先进的光学通信网络,并处于成为该技术全球领先供应商的强大地位。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First demonstration of optical phase conjugation with real time commercial transceiver
Enhanced Nonlinearity Compensation Efficiency of Optical Phase Conjugation System
增强光学相位共轭系统的非线性补偿效率
  • DOI:
    10.1364/ofc.2019.th2a.11
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali A
  • 通讯作者:
    Ali A
Combating Fiber Nonlinearity Using Dual-Order Raman Amplification and OPC
  • DOI:
    10.1109/lpt.2019.2911131
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Al-Khateeb, Mohammad;Tan, Mingming;Ellis, Andrew D.
  • 通讯作者:
    Ellis, Andrew D.
Impact of Pump Phase Modulation on Fibre Optical Parametric Amplifier Performance for 16-QAM Signal Amplification
泵浦相位调制对 16-QAM 信号放大光纤参量放大器性能的影响
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bastamova M
  • 通讯作者:
    Bastamova M
Mach-Zehnder FOPA for Dual Polarization Wavelength-Division-Multiplexed 100G Signal Amplification
用于双偏振波分复用 100G 信号放大的 Mach-Zehnder FOPA
  • DOI:
    10.1364/cleo_si.2022.sf3m.2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bessin F
  • 通讯作者:
    Bessin F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Ellis其他文献

Spatial Mode Division Multiplexing of Free-Space Optical Communications Using a Pair of Multiplane Light Converters and a Micromirror Array for Turbulence Emulation
使用一对多平面光转换器和微镜阵列进行湍流仿真的自由空间光通信的空间模分复用
  • DOI:
    10.3390/photonics11030241
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    David Benton;Yiming Li;A. Billaud;Andrew Ellis
  • 通讯作者:
    Andrew Ellis
"Equilibrium Securitization with Diverse Beliefs"
“多元化信念的均衡证券化”
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Ellis
  • 通讯作者:
    Andrew Ellis
A BEHAVIORAL FOUNDATION FOR ENDOGENOUS SALIENCE∗
内生显着性的行为基础*
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Ellis;Yusufcan Masatlioglu
  • 通讯作者:
    Yusufcan Masatlioglu
Experimental demonstration of 480 Gbit/s coherent transmission using a nanosecond switching tuneable laser
  • DOI:
    10.1016/j.optcom.2023.130164
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marcos Troncoso-Costas;Gaurav Jain;Yiming Li;Mohammed Patel;Lakshmi Narayanan Venkatasubramani;Sean O’Duill;Frank Smyth;Andrew Ellis;Francisco Diaz-Otero;Colm Browning;Liam Barry
  • 通讯作者:
    Liam Barry
Electoral System Design: The New International IDEA Handbook
选举制度设计:新国际IDEA手册
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Reynolds;B. Reilly;Andrew Ellis
  • 通讯作者:
    Andrew Ellis

Andrew Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Ellis', 18)}}的其他基金

High Dimensional Wireless Passive Optical Networking for Access Deployment (PON-HD)
用于接入部署的高维无线无源光网络 (PON-HD)
  • 批准号:
    EP/T009047/1
  • 财政年份:
    2020
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Research Grant
EPSRC-SFI:Energy Efficient M Communication using Combs (EEMC)
EPSRC-SFI:使用梳的节能 M 通信 (EEMC)
  • 批准号:
    EP/S016171/1
  • 财政年份:
    2019
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Research Grant
Petabit Energy Aware Capacity Enhancement (PEACE)
拍比特能源意识容量增强 (PEACE)
  • 批准号:
    EP/L000091/1
  • 财政年份:
    2014
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Fellowship
Randomised trial of ibuprofen for the prevention of ectopic bone-related pain and disability after hip replacement
布洛芬预防髋关节置换术后异位骨相关疼痛和残疾的随机试验
  • 批准号:
    nhmrc : 153712
  • 财政年份:
    2001
  • 资助金额:
    $ 114.95万
  • 项目类别:
    NHMRC Project Grants

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

Coherence-Gated Digital Optical Phase Conjugation for Rapid Focusing in Thick Tissue
用于厚组织快速聚焦的相干门控数字光学相位共轭
  • 批准号:
    488082-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Coherence-Gated Digital Optical Phase Conjugation for Rapid Focusing in Thick Tissue
用于厚组织快速聚焦的相干门控数字光学相位共轭
  • 批准号:
    488082-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Photonic Phase Conjugation Systems (PHOS)
光子相位共轭系统 (PHOS)
  • 批准号:
    EP/S002871/1
  • 财政年份:
    2018
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Research Grant
3D optical projection with generation method of optical complex amplitude using digital phase conjugation technology
3D光学投影及利用数字相位共轭技术的光学复振幅生成方法
  • 批准号:
    17K06380
  • 财政年份:
    2017
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coherence-Gated Digital Optical Phase Conjugation for Rapid Focusing in Thick Tissue
用于厚组织快速聚焦的相干门控数字光学相位共轭
  • 批准号:
    488082-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of Wavefront Shaping of Ultrashort Optical Pulses via Digital Optical Phase Conjugation
通过数字光相位共轭开发超短光脉冲波前整形
  • 批准号:
    16K13934
  • 财政年份:
    2016
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Species differences and evolution of phase II conjugation reaction and its cellular function
II相结合反应的物种差异和进化及其细胞功能
  • 批准号:
    15K12213
  • 财政年份:
    2015
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
SBIR Phase I: Development of a Platform for Rapid "Plug and Play" Chemo-enzymatic Conjugation of Bio-therapeutics
SBIR 第一阶段:开发生物治疗药物快速“即插即用”化学酶结合平台
  • 批准号:
    1345922
  • 财政年份:
    2014
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Standard Grant
Mode division multiplexing transmission using a multi-mode fiber and phase conjugation mirror
使用多模光纤和相位共轭镜的模分复用传输
  • 批准号:
    25600110
  • 财政年份:
    2013
  • 资助金额:
    $ 114.95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
SAGNAC INTERFEROMETER-BASED DIGITAL OPTICAL PHASE CONJUGATION
基于 SAGNAC 干涉仪的数字光学相位共轭
  • 批准号:
    8364159
  • 财政年份:
    2011
  • 资助金额:
    $ 114.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了