Engineering Microbial-Induced Carbonate Precipitation via Meso-Scale Simulations

通过中观尺度模拟工程微生物诱导碳酸盐沉淀

基本信息

  • 批准号:
    EP/S013997/1
  • 负责人:
  • 金额:
    $ 77.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Ageing infrastructure is an increasing economic and environmental problem. Economic because, while the production cost of one cubic metre of concrete varies between £45 - £55, it is estimated that currently the direct cost for repairing/maintaining one cubic metre of the same material is around £100. Environmental because production of cement generates 5 to 8% of the world's carbon dioxide emissions. Counteracting the degradation of concrete would lower the requirement for new materials and thus reduce the consumption of resources and the emission of greenhouse gases. Engineers have proposed a revolutionary solution, which was inspired by nature: self-healing materials able to self-repair as a result of the metabolic activity of bacteria. The main mechanism of concrete healing is the microbial-induced precipitation of calcium carbonate (MICP), which fills the cracks of the damaged material. However, the current approach in microbial self-healing concrete technology is to identify a few species of bacteria that work for limited sets of concretes and environments, and to optimise their MICP performance incrementally by experiments. This leads to solutions that are poorly transferable to new applications, unless new costly experimental campaigns are undertaken. In this proposal we aim to provide a new theoretical basis to predict the most promising combinations of bacteria and concrete, once the application-specific chemical compositions of the concrete of the surrounding environment are identified. This will establish a new paradigm for the digital design of concrete-bacteria systems and will enable technology transfer across the constructions sector.The approach we propose entails two main steps:1) developing and validating the world-first simulator of bacterial self-healing in concrete, starting from the length-scale of a single crack (1-100 micrometres) and then transferring information on the kinetics of self-healing to macroscale simulations of concrete mechanics;2) using the new simulator to inform an experimental campaign aimed at optimising the formulation of self-healing concrete for application in the aggressive chemical environment of an industrial wastewater treatment.The new simulator will be obtained by building on three existing state-of-the-art simulators that have been very recently developed at Newcastle and Cardiff universities and that model, to date separately, the three main steps involved in self-healing: i) bacterial growth; ii) kinetic evolution of an aggregate of mineral particles immersed in a solution; and iii) macro-mechanics of concrete elements with evolving strength and stiffness.The experiments will first provide inputs to the simulations and data for their validation. These experiments will be carried out in university laboratories and will address all the relevant length scales, from the nanoscale of the morphology of the mineral phases in concrete, to the microscale of the self-healing process inside single cracks, to the macroscale of self-healing concrete samples.The validated simulations will be run predictively to simulate the environmental conditions inside a wastewater treatment plant. The simulations will identify the best combinations of bacteria and concrete chemistry to ensure self-healing in such conditions, and the final experiments will produce the simulation-guided self-healing concrete and test their performance in the facilities of our industrial partner Northumbrian Water.If successful, this project will provide a completely new way to approach the design of self-healing materials via simulations. This would drastically reduce the cost, time, and uncertainty related to developing these materials, enhancing the rate of progress in the field by orders of magnitude and putting the UK at the forefront worldwide in this new technology.
基础设施老化是一个日益严重的经济和环境问题。经济,因为虽然一立方米混凝土的生产成本在45 - 55英镑之间变化,但据估计,目前修理/维护一立方米相同材料的直接成本约为100英镑。环保,因为水泥生产产生的二氧化碳排放量占世界的5%至8%。防止混凝土退化将降低对新材料的需求,从而减少资源消耗和温室气体排放。工程师们提出了一个革命性的解决方案,这是受自然的启发:自我修复材料能够自我修复的结果,细菌的代谢活动。混凝土愈合的主要机制是微生物诱导的碳酸钙沉淀(MICP),它填充了受损材料的裂缝。然而,目前微生物自修复混凝土技术的方法是确定几种细菌,为有限的混凝土和环境的工作,并通过实验逐步优化其MICP性能。这导致解决方案很难转移到新的应用程序,除非进行新的昂贵的实验活动。在这项建议中,我们的目标是提供一个新的理论基础,预测最有前途的组合细菌和混凝土,一旦应用特定的化学成分的混凝土周围环境被确定。这将为混凝土-细菌系统的数字化设计建立一个新的范例,并将使技术在整个建筑行业的转让。我们提出的方法包括两个主要步骤:1)开发和验证世界上第一个混凝土细菌自愈模拟器,从单个裂缝的长度尺度开始(1-100微米),然后将有关自愈合动力学的信息转移到混凝土力学的宏观模拟中; 2)使用新的模拟器通知一个实验活动,旨在优化自愈混凝土的配方,以应用于工业废水处理的侵蚀性化学环境。新的模拟器将通过建立在三个现有的状态-最近在纽卡斯尔大学和卡迪夫大学开发的最先进的模拟器,到目前为止,它们分别模拟了涉及自修复的三个主要步骤:i)细菌生长; ii)浸入溶液中的矿物颗粒聚集体的动力学演化;和iii)宏-混凝土构件力学与不断变化的强度和刚度。实验将首先为模拟和数据提供输入,以进行验证。这些实验将在大学实验室中进行,并将涉及所有相关的长度尺度,从混凝土中矿物相形态的纳米尺度,到单个裂缝内自愈过程的微观尺度,再到自愈混凝土样品的宏观尺度。经过验证的模拟将预测性地运行,以模拟污水处理厂内的环境条件。模拟将确定细菌和混凝土化学的最佳组合,以确保在这种条件下的自我修复,最终的实验将生产模拟引导的自我修复混凝土,并在我们的工业合作伙伴Northumbrian Water的设施中测试其性能。如果成功,该项目将提供一种全新的方式来通过模拟来设计自我修复材料。这将大大降低开发这些材料的成本,时间和不确定性,提高该领域的进展速度,并使英国在这项新技术方面处于世界前列。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Autogenous healing in cement: A kinetic Monte Carlo simulation of CaCO3 precipitation
水泥中的自愈合:CaCO3 沉淀的动力学蒙特卡罗模拟
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alex A
  • 通讯作者:
    Alex A
Engineering Microbial-Induced Carbonate Precipitation via Meso-Scale Simulations
通过中观尺度模拟工程微生物诱导碳酸盐沉淀
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ofiteru ID
  • 通讯作者:
    Ofiteru ID
Assessing the potential application of bacteria-based self-healing cementitious materials for enhancing durability of wastewater treatment infrastructure
  • DOI:
    10.1016/j.cemconcomp.2023.105259
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    M. Bagga;Ismael Justo-Reinoso;Charlotte Hamley-Bennett;George O. T. Merces;Saimir Luli;A. Akono;E. Masoero;K. Paine;S. Gebhard;I. D. Ofiţeru
  • 通讯作者:
    M. Bagga;Ismael Justo-Reinoso;Charlotte Hamley-Bennett;George O. T. Merces;Saimir Luli;A. Akono;E. Masoero;K. Paine;S. Gebhard;I. D. Ofiţeru
Carbonation and self-healing in concrete: Kinetic Monte Carlo simulations of mineralization
  • DOI:
    10.1016/j.cemconcomp.2023.105281
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    Aleena Alex;B. Freeman;A. Jefferson;Enrico Masoero
  • 通讯作者:
    Aleena Alex;B. Freeman;A. Jefferson;Enrico Masoero
Self-healing concrete: The surprise in the wastewater
自修复混凝土:废水中的惊喜
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bagga M
  • 通讯作者:
    Bagga M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irina Dana Ofiteru其他文献

Irina Dana Ofiteru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水热炭的微生物陈化(Microbial-aged Hydrochar)及其对稻田氨挥发的影响机制
  • 批准号:
    41877090
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

Microbial-induced maternal factors that influence fetal immune development
微生物诱导的影响胎儿免疫发育的母体因素
  • 批准号:
    10748437
  • 财政年份:
    2023
  • 资助金额:
    $ 77.03万
  • 项目类别:
The mechanisms underlying maternal obesity-induced microbial DNA accumulation in fetus and offspring metabolic abnormalities
母亲肥胖引起胎儿微生物 DNA 积累和后代代谢异常的机制
  • 批准号:
    10650245
  • 财政年份:
    2022
  • 资助金额:
    $ 77.03万
  • 项目类别:
Reconstructing the microbe-host interface in an advanced bioprinted co-culture system to study microbial community contributions to chemotherapy-induced oral mucositis
在先进的生物打印共培养系统中重建微生物-宿主界面,以研究微生物群落对化疗引起的口腔粘膜炎的贡献
  • 批准号:
    461756
  • 财政年份:
    2022
  • 资助金额:
    $ 77.03万
  • 项目类别:
    Operating Grants
The mechanisms underlying maternal obesity-induced microbial DNA accumulation in fetus and offspring metabolic abnormalities
母亲肥胖引起胎儿微生物 DNA 积累和后代代谢异常的机制
  • 批准号:
    10350153
  • 财政年份:
    2022
  • 资助金额:
    $ 77.03万
  • 项目类别:
Addressing microbial-induced pre- and post-harvest quality reduction in cannabis
解决微生物导致的大麻收获前和收获后质量下降的问题
  • 批准号:
    571270-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 77.03万
  • 项目类别:
    Alliance Grants
Potential of Microbial-Induced Carbonate Precipitation for Metal Sequestration in High Salinity Conditions
高盐度条件下微生物诱导碳酸盐沉淀金属封存的潜力
  • 批准号:
    559216-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 77.03万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Potential of Microbial-Induced Carbonate Precipitation for Metal Sequestration in High Salinity Conditions
高盐度条件下微生物诱导碳酸盐沉淀金属封存的潜力
  • 批准号:
    559216-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 77.03万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Gut microbial metabolites sulfonolipids mediate high fat diet-induced intestinal inflammation
肠道微生物代谢物磺脂介导高脂肪饮食引起的肠道炎症
  • 批准号:
    10531456
  • 财政年份:
    2021
  • 资助金额:
    $ 77.03万
  • 项目类别:
Characterization of the changes of cell surface structure induced by the microbial interspecies interactions.
微生物种间相互作用引起的细胞表面结构变化的表征。
  • 批准号:
    20K05735
  • 财政年份:
    2020
  • 资助金额:
    $ 77.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
International collaboration in challenging field application of microbial induced carbonate precipitation (MICP)
微生物诱导碳酸盐沉淀(MICP)富有挑战性的现场应用国际合作
  • 批准号:
    18KK0427
  • 财政年份:
    2019
  • 资助金额:
    $ 77.03万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了