Microwave and Terahertz Field Sensing and Imaging using Rydberg Atoms

使用里德堡原子进行微波和太赫兹场传感和成像

基本信息

  • 批准号:
    EP/S015973/1
  • 负责人:
  • 金额:
    $ 72.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Microwave and terahertz technologies play a critical role in modern life. Microwaves underpin mobile and satellite communications and are used for radar in navigation and meteorology. At higher frequencies, terahertz technologies are used to perform chemical sensing, non-invasive imaging, condition monitoring and more. These applications, and others, require fast detectors offering high sensitivity and the ability to perform spatially resolved imaging, which is particularly challenging in the terahertz domain where the majority of detectors require cryogenic cooling and offer slow thermal response times with limited absolute accuracy.In this proposal we seek to address this technology gap by developing a new class of atom-based sensors that exploit the extreme sensitivity of highly-excited Rydberg atoms which act as antennae to provide precision electric field measurement across the microwave and terahertz frequency range. Using lasers to excite Rydberg atoms in a thermal vapour cell, the radio-frequency fields can be measured from the resulting perturbation in the transmission of a weak probe beam.Atom-based sensors provide a number of advantages over traditional electric field measurement techniques; namely (i) they are intrinsically calibrated by relating the atomic properties to SI units to provide full measurement traceability, (2) act as point-like antenna for an in-situ measurement of the field, and (3) can be optically probed to enable sub-wavelength resolution of the radio-frequency field under study. The proposed research programme will explore a number of key challenges to implementing Rydberg-atom-based electric field sensors, including optimising the cell materials and geometry to minimise the perturbation or suppression of the applied field and developing measurement techniques to achieve the fundamental limits of sensitivity and accuracy. To address these challenges we will combine UK based expertise, including the pioneers of optical detection of Rydberg atoms, to fabricate and characterise atomic vapour cells compatible with microwave and terahertz measurements and demonstrate precision field measurement and 2D imaging of structured radio-frequency fields. To verify the device accuracy we will compare the performance of our sensors to state-of-the-art calibrated references at the National Physical Laboratory. Finally, we will demonstrate real-world application of the sensors to areas including all-optical microwave communication schemes similar to WiFi and characterisation of the complex near-field emission from a terahertz antenna array. These sensors offer a new approach to radiofrequency sensing, imaging and metrology and provide a route to achieving enhanced sensitivity at microwave frequencies whilst providing an enabling technology for emerging applications in the terahertz domain.
微波和太赫兹技术在现代生活中发挥着关键作用。微波是移动和卫星通信的基础,并用于导航和气象学中的雷达。在更高的频率下,太赫兹技术被用于执行化学传感、非侵入性成像、状况监测等。这些应用和其他应用都需要快速探测器提供高灵敏度和执行空间分辨率成像的能力,这在太赫兹领域尤其具有挑战性,因为大多数探测器需要低温冷却,并且提供有限绝对精度的缓慢热响应时间。在本提案中,我们试图通过开发一类新的基于原子的传感器来解决这一技术差距,该传感器利用高度激发的里德堡原子的极端灵敏度,作为天线,在微波和太赫兹频率范围内提供精确的电场测量。使用激光激发热蒸汽室中的里德堡原子,可以从微弱探测光束的传输产生的扰动中测量射频场。基于原子的传感器比传统的电场测量技术有许多优势;即:(I)它们通过将原子属性与SI单位相关联进行内在校准,以提供完整的测量可追溯性,(2)作为点状天线用于现场测量场,以及(3)可以通过光学探测来实现所研究的射频场的亚波长分辨率。拟议的研究计划将探索实施基于里德堡原子的电场传感器的一些关键挑战,包括优化电池材料和几何结构以将外加电场的扰动或抑制降至最低,以及开发测量技术以达到灵敏度和精度的基本极限。为了应对这些挑战,我们将结合英国的专业知识,包括里德堡原子光学探测的先驱,制造和表征与微波和太赫兹测量兼容的原子蒸汽室,并展示精确的场测量和结构化射频场的2D成像。为了验证设备的准确性,我们将把我们传感器的性能与国家物理实验室最先进的校准基准进行比较。最后,我们将展示传感器在现实世界中的应用,包括类似WiFi的全光微波通信方案,以及太赫兹天线阵列的复杂近场发射的特性。这些传感器为射频传感、成像和计量提供了一种新的方法,并提供了一种在微波频率实现更高灵敏度的途径,同时为太赫兹领域的新兴应用提供了使能技术。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Full-Field Terahertz Imaging at Kilohertz Frame Rates Using Atomic Vapor
  • DOI:
    10.1103/physrevx.10.011027
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Downes, Lucy A.;MacKellar, Andrew R.;Weatherill, Kevin J.
  • 通讯作者:
    Weatherill, Kevin J.
Universality of Z 3 parafermions via edge-mode interaction and quantum simulation of topological space evolution with Rydberg atoms
通过边缘模式相互作用实现 Z 3 平费米子的普适性以及里德伯原子拓扑空间演化的量子模拟
  • DOI:
    10.1103/physrevresearch.5.023076
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Benhemou A
  • 通讯作者:
    Benhemou A
Polarization spectroscopy of an excited state transition in Rubidium
  • DOI:
    10.1364/osac.439037
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Nourah F. Almuhawish;Shuying Chen;L. Downes;M. Jamieson;Andrew R. MacKellar;K. Weatherill
  • 通讯作者:
    Nourah F. Almuhawish;Shuying Chen;L. Downes;M. Jamieson;Andrew R. MacKellar;K. Weatherill
Enhanced metrology at the critical point of a many-body Rydberg atomic system
  • DOI:
    10.1038/s41567-022-01777-8
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    D. Ding;Zongkai Liu;B. Shi;Guangtao Guo;K. Mølmer;C. Adams
  • 通讯作者:
    D. Ding;Zongkai Liu;B. Shi;Guangtao Guo;K. Mølmer;C. Adams
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Weatherill其他文献

Kevin Weatherill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Weatherill', 18)}}的其他基金

High-speed Terahertz Imaging using Rydberg Atoms & Quantum Cascade Lasers
使用里德堡原子进行高速太赫兹成像
  • 批准号:
    EP/W033054/1
  • 财政年份:
    2022
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Research Grant
QUAntum teraheRTZ Sensor using rydberg atoms
使用里德伯原子的量子太赫 RTZ 传感器
  • 批准号:
    EP/R000158/1
  • 财政年份:
    2017
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Research Grant
Compact Ion-Sources based on Surface-Patterned Atom Chips
基于表面图案原子芯片的紧凑型离子源
  • 批准号:
    EP/M013103/1
  • 财政年份:
    2015
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Research Grant

相似国自然基金

量子限制杂质原子作为单电子量子点对Terahertz远红外发光器的应用
  • 批准号:
    60776044
  • 批准年份:
    2007
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Broadband detection of terahertz electric field around electron beam
电子束周围太赫兹电场的宽带探测
  • 批准号:
    23K11702
  • 财政年份:
    2023
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of a pulsed magnetic field for novel terahertz spectroscopy
新型太赫兹光谱脉冲磁场的构建
  • 批准号:
    572433-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 72.43万
  • 项目类别:
    University Undergraduate Student Research Awards
An establishment of a fast measurement method for wide-coverage radiation performance of terahertz band antennas using a sparse near-field distribution
稀疏近场分布太赫兹频段天线广覆盖辐射性能快速测量方法的建立
  • 批准号:
    22K14256
  • 财政年份:
    2022
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Generation of broadband high-field terahertz radiation using two-colour microplasma
使用双色微等离子体产生宽带高场太赫兹辐射
  • 批准号:
    21K14217
  • 财政年份:
    2021
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Terahertz, Topology, Technology: Realising the potential of nanoscale Dirac materials using near-field terahertz spectroscopy
太赫兹、拓扑、技术:利用近场太赫兹光谱实现纳米级狄拉克材料的潜力
  • 批准号:
    MR/T022140/1
  • 财政年份:
    2020
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Fellowship
Exploring the nanoscale optoelectronic properties of low-dimensional materials via terahertz spectroscopy and near-field terahertz microscopy
通过太赫兹光​​谱和近场太赫兹显微镜探索低维材料的纳米级光电特性
  • 批准号:
    2433263
  • 财政年份:
    2020
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Studentship
Terahertz near-field microscopy of nanostructures and 2D materials
纳米结构和二维材料的太赫兹近场显微镜
  • 批准号:
    2436185
  • 财政年份:
    2020
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Studentship
Ultrafast Optical and Terahertz Nonlinear, Strong Field Nanoplasmonics
超快光学和太赫兹非线性、强场纳米等离子体激元
  • 批准号:
    203194-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Discovery Grants Program - Individual
High-Field Terahertz Driven Photocarrier Dynamics in Nanomaterials
纳米材料中的高场太赫兹驱动光载流子动力学
  • 批准号:
    1905634
  • 财政年份:
    2019
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Standard Grant
Development of scanning tunneling spectroscopy induced by terahertz magnetic field
太赫兹磁场诱导扫描隧道光谱研究进展
  • 批准号:
    19K22119
  • 财政年份:
    2019
  • 资助金额:
    $ 72.43万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了