Spin-Orbit Coupling-Driven Superconducting Spintronics

自旋轨道耦合驱动的超导自旋电子学

基本信息

  • 批准号:
    EP/S016430/1
  • 负责人:
  • 金额:
    $ 23.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Ferromagnetism arises from parallel alignment of electron spins in a material and is much stronger than conventional singlet superconductivity resulting from the pairing of electrons with opposite spins. Therefore, the coupling or the proximity effect between superconductivity and ferromagnetism is short-ranged and is restricted to only a few nanometres from the interface of the two materials.However, in the last ten years surprising results from the interaction of superconductivity and ferromagnetism has challenged this conventional picture. At suitably engineered superconductor/ferromagnet interfaces, it is possible to generate superconductivity mediated by equal spin-paired electrons (triplet pairs) enabling a superconductor to carry a dissipationless current with a non-zero spin. The finite spin-polarisation and the zero dissipation integrates the rich potentials of spin based electronics (spintronics) and superconducting electronics into a rich new field of superconducting spintronics. Although attractive both fundamentally and in its reach for potential applications, generating triplet pairs at superconductor/ferromagnet interfaces require prohibitively complex magnetic structures.Strikingly, a dramatic simplification can be achieved by incorporating spin-orbit coupling in superconductor/ferromagnet heterostructures. Our recent experiments have indicated that using heavy-metals at superconductor/ferromagnet interfaces, it is possible to generate and control triplet pairs using a simple homogeneous ferromagnet. This not only radically simplifies structures used in superconducting spintronics but opens-up the possibility to study a new class of effects predicted to occur due to the coexistence of superconductivity, ferromagnetism and spin-orbit coupling.In this proposal, we will establish our understanding by focusing on three key areas: understanding the role of the materials and interfaces, maximise the triplet generation efficiency and finally, demonstrate a functional device working on triplet generation and control using spin-orbit coupling. With these objectives, we hope to achieve i) spin-orbit coupling as an efficient source and controlling factor for triplets thereby making superconducting spintronics ideas practically feasible ii) a functional device that is far simpler than any previously designed and serves as a blue-print for future device designs with radically new functionalities.
铁磁性产生于材料中电子自旋的平行排列,并且比由具有相反自旋的电子配对产生的常规单重态超导性强得多。因此,超导和铁磁性之间的耦合或邻近效应是短程的,并且仅限于两种材料界面的几纳米范围内。然而,在过去的十年中,超导和铁磁性相互作用的惊人结果挑战了这一传统的观点。在适当设计的超导体/铁磁界面上,可以产生由等自旋配对电子(三重态对)介导的超导性,使超导体能够携带具有非零自旋的无耗散电流。有限自旋极化和零耗散将自旋电子学和超导电子学的丰富潜能整合为超导自旋电子学的一个新领域。尽管在超导体/铁磁体界面产生三重态对在理论上和应用上都很有吸引力,但它需要极其复杂的磁性结构,而在超导体/铁磁体异质结构中引入自旋-轨道耦合可以大大简化这一过程。我们最近的实验表明,在超导体/铁磁体界面处使用重金属,使用简单的均匀铁磁体来产生和控制三重态对是可能的。这不仅从根本上简化了超导自旋电子学中使用的结构,而且开辟了研究一类新效应的可能性,这些效应预计将由于超导性,铁磁性和自旋轨道耦合的共存而发生。在这个提议中,我们将通过关注三个关键领域来建立我们的理解:理解材料和界面的作用,最大化三重态产生效率,最后,演示了一个功能性的装置,利用自旋轨道耦合产生和控制三重态。有了这些目标,我们希望实现i)自旋轨道耦合作为三重态的有效来源和控制因素,从而使超导自旋电子学的想法实际可行ii)功能器件比以前设计的任何器件都要简单得多,并作为未来具有全新功能的器件设计的蓝图。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strain driven emergence of topological non-triviality in YPdBi thin films.
  • DOI:
    10.1038/s41598-021-86936-2
  • 发表时间:
    2021-04-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Bhardwaj V;Bhattacharya A;Srivastava S;Khovaylo VV;Sannigrahi J;Banerjee N;Mani BK;Chatterjee R
  • 通讯作者:
    Chatterjee R
Colloquium: Spin-orbit effects in superconducting hybrid structures
研讨会:超导混合结构中的自旋轨道效应
  • DOI:
    10.48550/arxiv.2210.03549
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amundsen M
  • 通讯作者:
    Amundsen M
Superconductivity-induced change in magnetic anisotropy in epitaxial ferromagnet-superconductor hybrids with spin-orbit interaction
  • DOI:
    10.1103/physrevb.102.020405
  • 发表时间:
    2020-07-15
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Gonzalez-Ruano, Cesar;Johnsen, Lina G.;Aliev, Farkhad G.
  • 通讯作者:
    Aliev, Farkhad G.
Large electrocaloric effect in lead-free ferroelectric Ba0.85Ca0.15Ti0.9Zr0.1O3 thin film heterostructure
  • DOI:
    10.1063/5.0039143
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    A. Barman;Subhashree Chatterjee;Canlin Ou;Yau Yau Tse-Yau;N. Banerjee;S. Kar‐Narayan;A. Datta;D. Mu
  • 通讯作者:
    A. Barman;Subhashree Chatterjee;Canlin Ou;Yau Yau Tse-Yau;N. Banerjee;S. Kar‐Narayan;A. Datta;D. Mu
Long-ranged triplet supercurrent in a single in-plane ferromagnet with spin-orbit coupled contacts to superconductors
  • DOI:
    10.1103/physrevb.100.224519
  • 发表时间:
    2019-12-27
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Eskilt, Johannes R.;Amundsen, Morten;Linder, Jacob
  • 通讯作者:
    Linder, Jacob
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Niladri Banerjee其他文献

Care Seeking Practices for Chronic Pain and its correlates among Adults: an experience from a Rural Block of West Bengal
成人慢性疼痛的就医实践及其相关性:来自西孟加拉邦农村地区的经验
  • DOI:
    10.53553/jch.v06i02.005
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niladri Banerjee;Rivu Basu;R. De;Swagata Mandal;Rita Biswas;S. Lahiri
  • 通讯作者:
    S. Lahiri
Vaccine hesitancy in case of under-5 vaccination in slums of Burdwan Municipality, West Bengal: A cross-sectional study
西孟加拉邦布尔德旺市贫民窟 5 岁以下儿童疫苗接种犹豫不决:一项横断面研究
  • DOI:
    10.3126/ajms.v13i2.40880
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sayantani Nayak;D. Das;Rupali Thakur;Niladri Banerjee
  • 通讯作者:
    Niladri Banerjee
Realisation of de Gennes’ absolute superconducting switch with a heavy metal interface
利用重金属界面实现德热纳绝对超导开关
  • DOI:
    10.1038/s41467-025-61267-2
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Hisakazu Matsuki;Alberto Hijano;Grzegorz P. Mazur;Stefan Ilić;Binbin Wang;Iuliia Alekhina;Kohei Ohnishi;Sachio Komori;Yang Li;Nadia Stelmashenko;Niladri Banerjee;Lesley F. Cohen;David W. McComb;F. Sebastián Bergeret;Guang Yang;Jason W. A. Robinson
  • 通讯作者:
    Jason W. A. Robinson
Analysis of differentially methylated regions in primates and non-primates provides support for the evolutionary hypothesis of schizophrenia
对灵长类动物和非灵长类动物差异甲基化区域的分析为精神分裂症的进化假说提供了支持
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niladri Banerjee;T. Polushina;F. Bettella;V. Steen;O. Andreassen;S. Hellard
  • 通讯作者:
    S. Hellard
Letter to the Editor: Unstable Hemodynamics is not Always Predictive of Failed Nonoperative Management in Blunt Splenic Injury
  • DOI:
    10.1007/s00268-020-05688-8
  • 发表时间:
    2020-07-09
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Dinesh Kumar Bagaria;Amit Gupta;Niladri Banerjee
  • 通讯作者:
    Niladri Banerjee

Niladri Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Niladri Banerjee', 18)}}的其他基金

Overseas Travel Grant: XMCD investigation of spin-orbit coupled heavy-metal/ferromagnet heterostructures at the Advanced Light Source, Berkeley
海外旅行资助:伯克利先进光源的自旋轨道耦合重金属/铁磁体异质结构的 XMCD 研究
  • 批准号:
    EP/S021027/1
  • 财政年份:
    2018
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Research Grant

相似国自然基金

铁磁体/拓扑绝缘体异质结磁性邻近效应及Spin Orbit Torque研究
  • 批准号:
    11574129
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目

相似海外基金

Light-spin interconversion in heavy metals with strong spin orbit coupling
具有强自旋轨道耦合的重金属中的轻自旋互变
  • 批准号:
    22KJ0496
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring novel quantum phenomena induced by spin-orbit coupling and quantum interference effects
探索自旋轨道耦合和量子干涉效应引起的新颖量子现象
  • 批准号:
    23KJ0783
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Harvesting electronic flat bands and strong spin-orbit coupling for novel functionalities in metal monochalcogenides
合作研究:收获电子平带和强自旋轨道耦合以实现金属单硫族化物的新功能
  • 批准号:
    2219003
  • 财政年份:
    2022
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Continuing Grant
Ultrafast femtosecond laser control of electron dynamics in two-dimensional strong spin-orbit coupling materials
二维强自旋轨道耦合材料中电子动力学的超快飞秒激光控制
  • 批准号:
    22K13991
  • 财政年份:
    2022
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spin-orbit coupling and dimensionality at the heart of quantum magnetism of heavy transition metal oxides
重过渡金属氧化物量子磁性核心的自旋轨道耦合和维数
  • 批准号:
    EP/W00562X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Research Grant
Collaborative Proposal: Harvesting electronic flat bands and strong spin-orbit coupling for novel functionalities in metal monochalcogenides
合作提案:收获电子平带和强自旋轨道耦合以实现金属单硫属化物的新功能
  • 批准号:
    2219048
  • 财政年份:
    2022
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Continuing Grant
Coherent quantum information platform with spin-orbit coupling in silicon
硅中自旋轨道耦合的相干量子信息平台
  • 批准号:
    RGPIN-2019-04150
  • 财政年份:
    2022
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Structural Control of Spin-Orbit Coupling
职业:自旋轨道耦合的结构控制
  • 批准号:
    2046020
  • 财政年份:
    2021
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Continuing Grant
Coherent quantum information platform with spin-orbit coupling in silicon
硅中自旋轨道耦合的相干量子信息平台
  • 批准号:
    RGPIN-2019-04150
  • 财政年份:
    2021
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Discovery Grants Program - Individual
Designing Topological Superconductors from Spin-Orbit Coupling in Iridium Oxide Superlattices
利用氧化铱超晶格中的自旋轨道耦合设计拓扑超导体
  • 批准号:
    534657-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了