Exponentially Algebraically Closed Fields

指数代数闭域

基本信息

  • 批准号:
    EP/S017313/1
  • 负责人:
  • 金额:
    $ 40.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Exponentiation is the most fundamental mathematical operation after addition and multiplication. It arises when describing exponential growth and decay, in the Gaussian curves describing normal distributions for statistics, and in solutions to many of the basic differential equations which arise in physics. On the complex numbers, exponentiation also captures the sine and cosine functions, and is essential to model periodic behaviour more generally.Despite its ubiquity, some of the most basic algebraic questions about the exponential function remain unanswered. Specifically, given a system of equations in several variables using the operations of addition, multiplication and exponentiation, in general it is not known if that system has a solution in the complex numbers. The answer to the corresponding question without exponentiation, that is, for systems of polynomial equations, is yes. It boils down to the so-called Fundamental Theorem of Algebra and Hilbert's Nullstellensatz, and has been known since the end of the 19th century.The aim of this project is to prove the exponential analogue of the Fundamental Theorem of Algebra, that is, to show that the complex numbers are Exponentially Algebraically Closed (EAC). In modern terms, The Fundamental Theorem of Algebra states that the field of complex numbers is algebraically closed, and Hilbert's Nullstellensatz then characterizes whether or not a system of polynomial equations has solutions in an algebraically closed field. The exponential analogue of the latter theorem was given by Zilber, and is sometimes called Zilber's Nullstellensatz. Thus proving the EAC property for the complex numbers would solve the problem of whether a system of exponential equations has a solution in the complex numbers. The project will proceed in several directions. The desired result is known in the special case when the system contains only one equation, and also under certain conditions for two or more equations. In one direction we will push existing techniques from analysis further, aiming to get the complete result for two, three, or more equations. Analytic techniques involve finding approximate solutions, and then improving the approximations and showing that they converge to exact solutions. In a second direction we will develop new techniques using ideas from algebraic geometry and homotopy theory to attack the same problems.This approach involves considering how solutions must vary continuously as the equations vary, and concluding that the solutions must actually exist even without knowing exactly where they are. In a third direction we will find a new classification of the systems of equations along geometric lines, which will guide our use of the other methods. A fourth direction is to use the techniques we develop to tackle other related problems, such as solving systems of equations which involve operations other than exponentiation.In many cases, the solutions of the systems of equations under consideration can be graphically illustrated in the complex plane or via animations. A further aspect of this project is to develop such illustrations and use them to explain the research to an audience outside the mathematics research community.
指数运算是继加法和乘法之后最基本的数学运算。它出现在描述指数增长和衰减时,在描述统计正态分布的高斯曲线中,以及在物理学中出现的许多基本微分方程的解中。在复数上,指数化也可以捕捉正弦和余弦函数,并且对于更一般地建模周期性行为是必不可少的。尽管它无处不在,但关于指数函数的一些最基本的代数问题仍然没有答案。具体地说,给定一个使用加法、乘法和幂运算的多变量方程组,通常不知道该方程组是否有复数解。对于相应的问题,即对于多项式方程组,如果没有指数运算,答案是肯定的。它可以归结为所谓的代数基本定理和希尔伯特零点定理,从世纪末就已经为人所知。本项目的目的是证明代数基本定理的指数模拟,即证明复数是指数代数闭的(EAC)。在现代术语中,代数基本定理指出复数域是代数闭域,而希尔伯特的零点定理则描述了一个多项式方程组是否在代数闭域中有解。后一个定理的指数模拟由齐尔伯给出,有时也被称为齐尔伯零点定理。因此证明复数的EAC性质将解决指数方程组在复数中是否有解的问题。该项目将从几个方向进行。在系统只包含一个方程的特殊情况下,以及在某些条件下两个或多个方程的情况下,所需的结果是已知的。在一个方向上,我们将进一步推动现有的分析技术,旨在获得两个,三个或更多个方程的完整结果。分析技术包括找到近似解,然后改进近似,并证明它们收敛到精确解。在第二个方向,我们将发展新的技术,利用代数几何和同伦理论的思想来解决同样的问题,这种方法包括考虑解如何随着方程的变化而连续变化,并得出结论,即使不知道解的确切位置,解也一定存在。 在第三个方向上,我们将找到一种新的分类方程组沿着几何线,这将指导我们使用的其他方法。第四个方向是使用我们开发的技术来解决其他相关问题,例如求解涉及幂运算以外的运算的方程组。在许多情况下,所考虑的方程组的解可以在复平面上以图形方式或通过动画来说明。这个项目的另一个方面是开发这样的插图,并使用它们来解释数学研究社区以外的观众的研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ax-Schanuel and strong minimality for the j-function
Ax-Schanuel 和 j 函数的强极简性
A Geometric Approach to Some Systems of Exponential Equations
一些指数方程组的几何方法
A closure operator respecting the modular j-function
遵循模块化 j 函数的闭包运算符
  • DOI:
    10.1007/s11856-022-2362-y
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Aslanyan V
  • 通讯作者:
    Aslanyan V
Some Remarks on Atypical Intersections
关于非典型路口的一些评论
  • DOI:
    10.48550/arxiv.1905.00827
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aslanyan V
  • 通讯作者:
    Aslanyan V
Blurrings Of The J-Function
J 功能的模糊
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Kirby其他文献

Exponentially closed fields and the conjecture on intersections with tori
指数闭域及其与圆环相交的猜想
New high‐resolution grid of gravimetric terrain corrections over Australia
澳大利亚新的高分辨率重力地形校正网格
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Will Featherstone;Jonathan Kirby
  • 通讯作者:
    Jonathan Kirby
Exponential and Weierstrass Equations
指数和韦尔斯特拉斯方程
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Kirby
  • 通讯作者:
    Jonathan Kirby
Existentially closed exponential fields
存在闭指数域
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Levon Haykazyan;Jonathan Kirby
  • 通讯作者:
    Jonathan Kirby
Quasiminimal structures and excellence
准最小结构和卓越
  • DOI:
    10.1112/blms/bdt076
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Martin Bays;B. Hart;Tapani Hyttinen;Meeri Kesälä;Jonathan Kirby
  • 通讯作者:
    Jonathan Kirby

Jonathan Kirby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Kirby', 18)}}的其他基金

Model theory around the j-invariant
围绕 j 不变量的模型理论
  • 批准号:
    EP/L006375/1
  • 财政年份:
    2014
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Research Grant
Model Theory of some Differential Equations arising from Diophantine Geometry
丢番图几何中一些微分方程的模型论
  • 批准号:
    EP/D065747/2
  • 财政年份:
    2009
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Fellowship
Model Theory of some Differential Equations arising from Diophantine Geometry
丢番图几何中一些微分方程的模型论
  • 批准号:
    EP/D065747/1
  • 财政年份:
    2007
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Fellowship
Application of the Wavelet Transform to Isostatic Analyses in Australia
小波变换在澳大利亚等静压分析中的应用
  • 批准号:
    ARC : DP0211877
  • 财政年份:
    2002
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Discovery Projects

相似海外基金

Algebraic geometry over arbitrary (in particular, non-algebraically closed) fields
任意(特别是非代数闭)域上的代数几何
  • 批准号:
    2886391
  • 财政年份:
    2023
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Studentship
Study on Fano varieties defined over an algebraically closed field in positive characteristic
正特征代数闭域上定义的 Fano 簇的研究
  • 批准号:
    17K05208
  • 财政年份:
    2017
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pairs of Algebraically Closed Fields
代数闭域对
  • 批准号:
    450501-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 40.76万
  • 项目类别:
    University Undergraduate Student Research Awards
Pairs of Algebraically Closed Fields
代数闭域对
  • 批准号:
    449647-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 40.76万
  • 项目类别:
    University Undergraduate Student Research Awards
Resolution of singularities of an algebraic variety over an algebraically closed field in positive characteristic
正特征代数闭域上代数簇奇点的解析
  • 批准号:
    23740016
  • 财政年份:
    2011
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Resolution of Singularities of an algebraic varieties defined over an algebraically closed field
代数闭域上定义的代数簇奇点的解析
  • 批准号:
    20740012
  • 财政年份:
    2008
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Algebraically Closed Skew Fields and Applications (Mathematical Sciences)
代数闭偏斜域及其应用(数学科学)
  • 批准号:
    8201115
  • 财政年份:
    1982
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Standard Grant
Structural Characterization of the Known Finite Dimensional Simple Lie Algebras Over an Algebraically Closed Field of Prime Characteristic
素数特征代数闭域上已知有限维简单李代数的结构表征
  • 批准号:
    7204547
  • 财政年份:
    1972
  • 资助金额:
    $ 40.76万
  • 项目类别:
    Standard Grant
ALGEBRAICALLY CLOSED GROUPS
代数闭群
  • 批准号:
    7244522
  • 财政年份:
    1972
  • 资助金额:
    $ 40.76万
  • 项目类别:
STRUCTURAL CHARACTERIZATION OF THE KNOWN FINITE DIMENSIONAL SIMPLE LIE ALGEBRAS OVER AN ALGEBRAICALLY CLOSED FIELD OF PRIME CHARACTERISTIC
质数特征代数闭域上已知有限维简单李代数的结构表征
  • 批准号:
    7244527
  • 财政年份:
    1972
  • 资助金额:
    $ 40.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了