Diagram Monoids and Their Congruences

图幺半群及其同余

基本信息

  • 批准号:
    EP/S020616/1
  • 负责人:
  • 金额:
    $ 4.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Diagram monoids have over the last few years come into sharp focus, because of their fundamental role in the formation of diagram algebras, which in turn have applications in representation theory and theoretical physics, and also because of their intriguing algebraic and combinatorial properties. Until recently, investigations were largely concerned with the basic semigroup-theoretic and combinatorial properties of these monoids, for instance determination of Green's equivalences, computations of minimal generating sets and defining relations, and characterisations and counting of idempotents. PI (NR) and James East (JE) have recently started a collaboration on another important aspect of these monoids, namely their congruences. In a ground-breaking paper (joint with J.D. Mitchell and M. Torpey) they classified all the congruences on all classical diagram monoids over a finite set. In the process they started developing what looks like a promising general theory of semigroup congruences, at least for finite semigroups. Arising from this work are a number of strands, each important in its own right, and the project proposed here is designed to enable these strands to be followed up and for their full potential to be realised. We have identified four work packages -- dealing with infinite partition monoids, infinite diagram monoids, finite and infinite twisted diagram monoids, and development of a general theory of congruences -- which will be investigated in the course of four research visits by NR to JE over a period of two years.
图幺半群在过去的几年里成为人们关注的焦点,因为它们在图代数的形成中起着重要的作用,而图代数又在表示论和理论物理中有着应用,也因为它们有趣的代数和组合性质。直到最近,调查主要关注的基本半群理论和组合性质的这些monoid,例如确定的绿色的等价,计算最小生成集和定义关系,和特征和计数的幂等元。PI(NR)和James East(JE)最近开始了对这些幺半群的另一个重要方面的合作,即它们的同余。在一篇开创性的论文中(与J.D. Mitchell和M. Torpey),他们分类了有限集合上所有经典图么半群上的所有同余。在这个过程中,他们开始发展什么看起来像一个有前途的一般理论半群同余,至少有限半群。从这项工作中产生了若干方面,每一方面都很重要,这里提出的项目旨在使这些方面能够得到贯彻,并充分发挥其潜力。我们已经确定了四个工作包-处理无限分区monoids,无限图monoids,有限和无限扭曲图monoids,和发展的一般理论的同余-这将是调查过程中的四个研究访问NR到乙脑在为期两年。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Congruence lattices of finite diagram monoids
  • DOI:
    10.1016/j.aim.2018.05.016
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    J. East;J. Mitchell;N. Ruškuc;M. Torpey
  • 通讯作者:
    J. East;J. Mitchell;N. Ruškuc;M. Torpey
Properties of congruences of twisted partition monoids and their lattices
扭曲分块幺半群及其格的同余性质
Heights of one- and two-sided congruence lattices of semigroups
半群单边和双边同余格的高度
  • DOI:
    10.48550/arxiv.2310.08229
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brookes M
  • 通讯作者:
    Brookes M
Congruence Lattices of Ideals in Categories and (Partial) Semigroups
范畴和(部分)半群中理想的同余格
Congruences on Infinite Partition and Partial Brauer Monoids
  • DOI:
    10.17323/1609-4514-2022-22-2-295-372
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    J. East;N. Ruškuc
  • 通讯作者:
    J. East;N. Ruškuc
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nik Ruskuc其他文献

Nik Ruskuc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nik Ruskuc', 18)}}的其他基金

Right Noetherian and coherent monoids
右诺特和相干幺半群
  • 批准号:
    EP/V003224/1
  • 财政年份:
    2021
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Research Grant
Representation Theory of Semigroups
半群表示论
  • 批准号:
    EP/I032282/1
  • 财政年份:
    2012
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Research Grant
The Structure of Permutation Classes
排列类的结构
  • 批准号:
    EP/J006440/1
  • 财政年份:
    2011
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Research Grant
Automata, Languages, Decidability in Algebra
自动机、语言、代数可判定性
  • 批准号:
    EP/H011978/1
  • 财政年份:
    2010
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Research Grant

相似海外基金

Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
  • 批准号:
    EP/V032003/1
  • 财政年份:
    2022
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Fellowship
Right Noetherian and coherent monoids
右诺特和相干幺半群
  • 批准号:
    EP/V002953/1
  • 财政年份:
    2021
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Research Grant
Right Noetherian and coherent monoids
右诺特和相干幺半群
  • 批准号:
    EP/V003224/1
  • 财政年份:
    2021
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Research Grant
Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem
特殊逆幺半群:子群、结构、几何、重写系统和应用题
  • 批准号:
    EP/N033353/1
  • 财政年份:
    2016
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Research Grant
Study of the structure of semigalois categories and profinite monoids and its application to regular languages
半伽罗范畴和有限幺半群的结构研究及其在正则语言中的应用
  • 批准号:
    16K21115
  • 财政年份:
    2016
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Storage mechanisms as monoids
存储机制为幺半群
  • 批准号:
    272263028
  • 财政年份:
    2015
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Research Grants
Research on monoids consisting of limits of linear actions on a projective manifold
射影流形上线性作用极限的幺半群研究
  • 批准号:
    15K13421
  • 财政年份:
    2015
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Random Walks on Monoids
幺半群上的随机游走
  • 批准号:
    467240-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 4.46万
  • 项目类别:
    University Undergraduate Student Research Awards
Workshop on Algebraic Monoids, Group Embeddings and Algebraic Combinatorics
代数幺半群、群嵌入和代数组合研讨会
  • 批准号:
    1207770
  • 财政年份:
    2012
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Standard Grant
Reductive monoids and ratinal hyperplane arrangements
还原幺半群和有理超平面排列
  • 批准号:
    7772-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 4.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了