CBET-EPSRC Dynamic Wetting & Interfacial Transitions in Three Dimensions: Theory vs Experiment
CBET-EPSRC动态润湿
基本信息
- 批准号:EP/S029966/1
- 负责人:
- 金额:$ 68.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The spreading of liquids over solid objects is a familiar and every day occurrence. For example: raindrops smashing into windscreens; stones being thrown into ponds; a chocolate fountain coating a strawberry. In all these cases, there is a maximum speed at which the liquid can traverse (or 'wet') the object and going beyond this speed creates easily observable effects such as the the disintegration of the raindrop into smaller drops or a patchy coating of the strawberry. Remarkably, despite the seemingly innocuous nature of these everyday phenomena, at present there exists no theory or computational model capable of predicting, and hence controlling, the maximum speed of wetting.In addition to the academic curiosity of these events, they form the basis of a remarkable array of technological applications and natural processes. In particular, the coating of thin layers of liquid which subsequently solidify is a ~$100 billion (and ever-increasing) market which is key to the manufacture of products ranging from solar cells, to alleviate energy and environmental crises, to emerging capabilities to print electronic circuits. In these industries, an ability to create optimal designs is currently limited by our knowledge of the underlying physics. This project will underpin exploration of the aforementioned phenomena and innovation within industry by exploiting a synergy between computational models embedded within software and cutting-edge experimental analysis. The computational and experimental aspects are particularly ambitious as (a) the wetting of solids is a strongly multiscale problem, requiring resolution from almost-molecular scales right up to engineering application scales, and (b) the process is inherently three-dimensional, meaning that simplifications leading to reductions in computational complexity are impossible and high performance computing techniques must be implemented. This project exploits recent advances in (a), by the Investigators, in order to tackle the problems associated with (b) for the very first time.New knowledge of how liquids spread over solid surfaces will be initially focussed on industrial coating problems, where the challenge is to wet a solid with a liquid as fast as possible without entraining air. Initial progress will be guided and enhanced by a collaboration with 3M (famous for products such as Post-it and Scotchgard), a multinational corporation with ~$30 billion sales annually from manufacturing solar cells, paints, anti-reflective coatings, adhesives, etc. For them, a computational model provides a fast and cost-effective way to achieve understanding of the physical mechanisms at play in order to optimise the coating process. Breakthroughs achieved in this project will have impact within related fields of research. Within industry, this involves working with Trijet, a leading consulting firm on emerging drop-based technologies, who will translate our advances to improve the control of inkjet printing technologies that are being used in everyday applications of fluids, e.g. in the automotive industries and in the printing of high-value metallic inks such as silver for printed electronics. Furthermore, our advances could have impact in other fields, such as climate science, where similar flow structures are observed when a liquid drop impacts a bath of the same liquid, as occurs when a raindrop impacts the ocean. Here, our understanding of how trapped gas between the drop and the ocean is entrained into the latter could feed into climate models, where this is a key parameter.
液体在固体上的扩散是一种常见的、每天都会发生的现象。例如:雨点砸在挡风玻璃上;石头被扔进池塘里;巧克力喷泉涂在草莓上。在所有这些情况下,液体可以横穿(或“润湿”)物体的最大速度,超过这个速度会产生容易观察到的效果,例如雨滴分解成更小的水滴或草莓的斑块涂层。值得注意的是,尽管这些日常现象看似无害,但目前还没有理论或计算模型能够预测并控制润湿的最大速度。除了对这些事件的学术好奇心之外,它们还构成了一系列引人注目的技术应用和自然过程的基础。特别是,随后固化的液体薄层的涂层是一个约1000亿美元(并且不断增长)的市场,这是制造从太阳能电池到缓解能源和环境危机的产品的关键,以及印刷电子电路的新兴能力。在这些行业中,创建最佳设计的能力目前受到我们对基础物理学知识的限制。该项目将通过利用软件中嵌入的计算模型和尖端实验分析之间的协同作用,支持对上述现象的探索和行业内的创新。计算和实验方面是特别雄心勃勃的,因为(a)固体的润湿是一个强烈的多尺度问题,需要解决从几乎分子尺度的工程应用规模,和(B)的过程是固有的三维,这意味着简化导致计算复杂性的降低是不可能的,必须实现高性能的计算技术。该项目利用了研究人员在(a)方面的最新进展,以首次解决与(B)相关的问题。关于液体如何在固体表面上扩散的新知识最初将集中在工业涂层问题上,其中的挑战是尽可能快地用液体润湿固体而不夹带空气。与3 M的合作将指导和加强初步进展(以Post-it和Scotchgard等产品而闻名),一家跨国公司,年销售额约300亿美元,生产太阳能电池、油漆、抗反射涂层、粘合剂等。计算模型提供了一个快速和成本-这是一种有效的方法,可以理解起作用的物理机制,以优化涂层工艺。该项目取得的突破性进展将对相关研究领域产生影响。在行业内,这涉及到与Trijet合作,Trijet是一家领先的咨询公司,致力于新兴的基于液滴的技术,他们将把我们的进步转化为改进喷墨打印技术的控制,这些技术用于流体的日常应用,例如汽车行业和印刷电子产品的高价值金属油墨(如银)的印刷。此外,我们的进步可能会对其他领域产生影响,例如气候科学,当液滴撞击相同液体的浴缸时,会观察到类似的流动结构,就像雨滴撞击海洋时一样。在这里,我们对水滴和海洋之间的气体如何被夹带到海洋中的理解可以输入气候模型,这是一个关键参数。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FORMULATION, QUALITY, CLEANING, AND OTHER ADVANCES IN INKJET PRINTING
- DOI:10.1615/atomizspr.2020034559
- 发表时间:2021-01-01
- 期刊:
- 影响因子:1.2
- 作者:Castrejon-Pita, A. A.;Betton, E. S.;Castrejon-Pita, J. R.
- 通讯作者:Castrejon-Pita, J. R.
Impact of droplets onto surfactant-laden thin liquid films
- DOI:10.1017/jfm.2023.224
- 发表时间:2022-10
- 期刊:
- 影响因子:3.7
- 作者:C. Constante-Amores;L. Kahouadji;S. Shin;J. Chergui;D. Juric;J. Castrejón-Pita;O. Matar;A. A. Castrej
- 通讯作者:C. Constante-Amores;L. Kahouadji;S. Shin;J. Chergui;D. Juric;J. Castrejón-Pita;O. Matar;A. A. Castrej
Computational modelling of Leidenfrost drops
- DOI:10.1017/jfm.2022.66
- 发表时间:2022-02
- 期刊:
- 影响因子:3.7
- 作者:I. Chakraborty;M. Chubynsky;J. Sprittles
- 通讯作者:I. Chakraborty;M. Chubynsky;J. Sprittles
On the velocity distribution function of spontaneously evaporating atoms
关于自发蒸发原子的速度分布函数
- DOI:10.48550/arxiv.2103.07285
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Busuioc S
- 通讯作者:Busuioc S
Modeling Leidenfrost levitation of soft elastic solids
软弹性固体的莱顿弗罗斯特悬浮建模
- DOI:10.48550/arxiv.2207.02769
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Binysh J
- 通讯作者:Binysh J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Sprittles其他文献
James Sprittles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Sprittles', 18)}}的其他基金
Mathematical Modelling of Rare Events in Nanoflows: A Feasibility Study
纳流中罕见事件的数学建模:可行性研究
- 批准号:
EP/W031426/1 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
Darcy-scale dynamics of microscopically fluctuating interfaces
微观波动界面的达西尺度动力学
- 批准号:
EP/P020887/1 - 财政年份:2017
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
The Propagation of Wetting Fronts Through Porous Media
润湿锋通过多孔介质的传播
- 批准号:
EP/G048916/2 - 财政年份:2012
- 资助金额:
$ 68.72万 - 项目类别:
Fellowship
The Propagation of Wetting Fronts Through Porous Media
润湿锋通过多孔介质的传播
- 批准号:
EP/G048916/1 - 财政年份:2009
- 资助金额:
$ 68.72万 - 项目类别:
Fellowship
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
- 批准号:
EP/Y032489/1 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
- 批准号:
EP/Z531182/1 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
- 批准号:
EP/Y024052/1 - 财政年份:2024
- 资助金额:
$ 68.72万 - 项目类别:
Research Grant