Molecular Mechanics of Enzymes
酶的分子力学
基本信息
- 批准号:EP/T002875/1
- 负责人:
- 金额:$ 265.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Laser light can be used to perform multiple roles, including sensing, manipulating and moving objects within a laser trap (so-called optical tweezers). It is remarkable that the application of light allows one to exert minute optical forces on individual protein molecules. By pulling on individual molecules it has been possible to study DNA and protein structures in great detail. The pulling and unfolding of proteins has revealed the intramolecular forces that give them their three-dimensional structure. Optical tweezer experiments have also allowed the direct measurement of pico-Newton forces that are exerted by individual motor proteins. However, optical tweezers and other single-molecule techniques are currently not sensitive enough to resolve femto-Newton (fN) forces, and hence not all molecular forces can yet be investigated. An important, but so far poorly understood example is the miniscule fN forces that are exerted by active enzymes when they are catalysing reactions in living systems.This research programme will develop an entirely novel and much more sensitive alternative optical tweezer technology. The nanosensors developed in this programme will provide optical 'hands' that can probe and feel-out fN forces of enzymes. This allows precise sensing of the energetics of conformational changes of enzymes, i.e. their own deforming motion, for the first time. Such measurements will provide fundamental insights into the forces that drive the conformational changes that are required for catalysis. We will visualise the enzyme movements and this will allow us to develop more accurate models to predict how these very important molecular machines function. Our approach will unravel nature's design principles for a class of nanomachines that carry out most of the important biochemistry and molecular signalling that make our bodies work. The technology developed in this programme will not only sense forces exerted by enzymes, but allows us to manipulate the complex motions of active enzymes. Such control offers the possibility of making some patterns of molecular organisation in an enzyme more likely than another, and can be used to control enzymatic activity. Demonstrating this capability will prepare the ground for future manipulation and exploitation of synthetic biomolecular machinery and designing enzymes for specific chemical or medical tasks.Our pathway to impact work will demonstrate the extreme sensitivity of our technology in healthcare diagnostic tests that we will develop for human pathogens. Nanosensors will be modified by attaching enzymes. This will allow us to measure pathogen-specific signals during enzymatic breakdown of different sugars present on cell-walls of the human fungal pathogen Candida albicans - a pathogenic fungus that causes around 250,000 blood stream infections per year. This measurement will enable a more rapid identification of fungal pathogens than current microbial diagnostics of infections based on cell cultures. This approach will be tested on samples provided by the Fungal Immunology Group, AFGrica, located in Cape Town, South Africa.
激光可用于执行多种角色,包括在激光阱(所谓的光镊)内感测、操纵和移动物体。值得注意的是,光的应用允许人们对单个蛋白质分子施加微小的光学力。通过拉动单个分子,可以非常详细地研究DNA和蛋白质结构。蛋白质的拉伸和展开揭示了赋予它们三维结构的分子内力。光镊实验也允许直接测量由单个马达蛋白施加的皮牛顿力。然而,光镊和其他单分子技术目前还不够灵敏,无法解析飞秒牛顿(fN)力,因此还不能研究所有的分子力。一个重要但迄今知之甚少的例子是活性酶在催化生命系统中的反应时所施加的微小fN力。这项研究计划将开发一种全新的、灵敏度更高的替代光镊技术。该计划中开发的纳米传感器将提供光学“手”,可以探测和探测酶的fN力。这使得精确的能量感测的构象变化的酶,即自己的变形运动,第一次。这种测量将提供基本的洞察力,推动催化所需的构象变化的力量。我们将可视化酶的运动,这将使我们能够开发更准确的模型来预测这些非常重要的分子机器如何运作。我们的方法将揭开自然界设计一类纳米机器的原理,这些纳米机器执行大多数重要的生物化学和分子信号,使我们的身体工作。该计划开发的技术不仅可以感知酶施加的力,还可以让我们操纵活性酶的复杂运动。这种控制提供了使酶中的某些分子组织模式比另一种更可能的可能性,并且可以用于控制酶活性。展示这一能力将为未来操纵和开发合成生物分子机制以及设计用于特定化学或医疗任务的酶奠定基础。我们的影响工作之路将展示我们的技术在医疗诊断测试中的极端敏感性,我们将为人类病原体开发。纳米传感器将通过附着酶进行修饰。这将使我们能够在人类真菌病原体白色念珠菌细胞壁上存在的不同糖的酶分解过程中测量病原体特异性信号-白色念珠菌是一种每年导致约25万例血流感染的致病真菌。这种测量将能够比目前基于细胞培养的感染微生物诊断更快速地鉴定真菌病原体。将对位于南非开普敦的AFGrica真菌免疫组提供的样本进行测试。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing Individual DNA Transient Hybridization Kinetics Using DNA-PAINT and Optoplasmonic Sensing techniques
使用 DNA-PAINT 和光等离子传感技术比较个体 DNA 瞬时杂交动力学
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Eerqing N.
- 通讯作者:Eerqing N.
Optimal Cold Atom Thermometry Using Adaptive Bayesian Strategies
- DOI:10.1103/prxquantum.3.040330
- 发表时间:2022-04
- 期刊:
- 影响因子:9.7
- 作者:Jonas Glatthard;Jesús Rubio;Rahul Sawant;T. Hewitt;G. Barontini;L. Correa
- 通讯作者:Jonas Glatthard;Jesús Rubio;Rahul Sawant;T. Hewitt;G. Barontini;L. Correa
Anomalous DNA hybridisation kinetics on gold nanorods revealed via a dual single-molecule imaging and optoplasmonic sensing platform
- DOI:10.1039/d3nh00080j
- 发表时间:2023-05-11
- 期刊:
- 影响因子:9.7
- 作者:Eerqing,Narima;Wu,Hsin-Yu;Vollmer,Frank
- 通讯作者:Vollmer,Frank
Comparing Transient Oligonucleotide Hybridization Kinetics Using DNA-PAINT and Optoplasmonic Single-Molecule Sensing on Gold Nanorods
- DOI:10.1021/acsphotonics.1c01179
- 发表时间:2021-09-08
- 期刊:
- 影响因子:7
- 作者:Eerqing, Narima;Subramanian, Sivaraman;Vollmer, Frank
- 通讯作者:Vollmer, Frank
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Vollmer其他文献
Frequency-domain displacement sensing with a fiber ring-resonator containing a variable gap
- DOI:
10.1016/j.sna.2006.06.022 - 发表时间:
2007-03-15 - 期刊:
- 影响因子:
- 作者:
Frank Vollmer;Peer Fischer - 通讯作者:
Peer Fischer
Nonlinear Sensing with Whispering-Gallery Mode Microcavities: From Label-Free Detection to Spectral Fingerprinting
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Wen-Jing Liu;You-Ling Chen;Shui-Jing Tang;Frank Vollmer;Yun-Feng Xiao - 通讯作者:
Yun-Feng Xiao
Whispering-gallery microlasers for cell tagging and barcoding: the prospects for in vivo biosensing
用于细胞标记和条形码编码的回音壁微激光器:体内生物传感的前景
- DOI:
10.1038/s41377-021-00517-6 - 发表时间:
2021-04-14 - 期刊:
- 影响因子:23.400
- 作者:
Nikita Toropov;Frank Vollmer - 通讯作者:
Frank Vollmer
Frank Vollmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Vollmer', 18)}}的其他基金
The quantum avian compass probed on the single molecule level
在单分子水平上探测量子鸟类指南针
- 批准号:
EP/X018822/1 - 财政年份:2022
- 资助金额:
$ 265.93万 - 项目类别:
Research Grant
An Optical Single Molecule Scanner of Protein Motion
蛋白质运动的光学单分子扫描仪
- 批准号:
EP/R031428/1 - 财政年份:2018
- 资助金额:
$ 265.93万 - 项目类别:
Fellowship
Ultra-Sensitive and Ultra-Fast Absorption Spectrometer for Micro-Droplet-based Enzyme Evolution Experiments
用于微滴酶进化实验的超灵敏、超快吸收光谱仪
- 批准号:
BB/R022178/1 - 财政年份:2018
- 资助金额:
$ 265.93万 - 项目类别:
Research Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Continuing Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
- 批准号:
EP/X027163/2 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Fellowship
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
- 批准号:
2331994 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Standard Grant
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
- 批准号:
BB/Y003896/1 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
- 批准号:
EP/Y002415/1 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Research Grant
Control of endothelial cell mechanics and blood vessel remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
- 批准号:
23K23887 - 财政年份:2024
- 资助金额:
$ 265.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)