Scalable Qubit Arrays for Quantum Computing and Optimisation
用于量子计算和优化的可扩展量子位阵列
基本信息
- 批准号:EP/T005386/1
- 负责人:
- 金额:$ 288.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum mechanics provides a transformative approach to computing that is able to deliver computational performance surpassing the capability of modern digital hardware with as few as a hundred low-noise qubits. Quantum computers therefore offer a wide economic impact through access to disruptive new solutions to problems in both academia and industry, such as quantum chemistry for enhanced drug design or modelling of correlated media for designing new materials for aerospace and engineering. Quantum computation can also provide a dramatic speed-up of computationally expensive problems ranging from classical optimisation relevant to logistics (e.g. travelling salesman type problems) and financial services sectors or security and defence (e.g. factorisation). A major barrier to realising the benefits of quantum computation is developing a system with a large number of low-noise qubits.This Prosperity Partnership exploits a unique opportunity to combine the capabilities in advanced laser systems and quantum system integration of M Squared Lasers with the cold-atom and quantum algorithm expertise at the University of Strathclyde. Our vision is to develop SQuAre (Scalable Qubit Arrays) - a promising architecture for quantum computation and optimisation based on reconfigurable arrays of neutral atoms that is able to overcome the limitations in scaling of existing qubit architectures. This approach offers a highly competitive route to scalable quantum computation with large numbers of identical qubits capable of performing high-quality quantum gates, as demonstrated in recent experimental breakthroughs. Our Partnership combines the critical skills and knowledge that are integral to development of this new architecture. Together, we will- build a versatile platform for neutral atom quantum computing using scalable arrays of up to 100 qubits;- develop new algorithms and applications that solve industrially-relevant computation and optimisation problems through working directly with academic and industrial end-users; - create a software architecture to provide an accessible interface to programming the quantum hardware abstracted from the technical implementation;- perform characterisation and benchmarking of algorithms on our hardware to demonstrate a near-term practical advantage of quantum computation. The proposed research program will address important open questions relating to whether the quantum advantage for optimisation problems is preserved as the system scales, and how qubit imperfections affect the ability to obtain the ideal solutions. Early benefits of the Partnership will see development of new advanced laser systems and experiment control hardware that will establish the required supply chain technologies to underpin future scaling and commercialisation of the SQuAre platform to reach 1000 qubits within 10 years.This Prosperity Partnership has a strong foundation in the existing strategic relationship between M Squared Lasers and the University of Strathclyde with a track record in developing and commercialising novel quantum and photonics technologies. The Prosperity Partnership will transform our collaboration from globally competitive to internationally leading, placing the UK at the forefront of the rapidly growing field of neutral atom quantum computation in terms of academic leadership, validation of algorithms in real-life applications and commercial availability of quantum computing systems and components.
量子力学提供了一种变革性的计算方法,能够提供超过现代数字硬件能力的计算性能,只需100个低噪声量子位。因此,量子计算机通过对学术界和工业界问题的颠覆性新解决方案提供广泛的经济影响,例如用于增强药物设计的量子化学或用于设计航空航天和工程新材料的相关介质建模。量子计算还可以为计算成本高的问题提供显着的加速,这些问题包括与物流相关的经典优化(例如旅行推销员类型的问题)和金融服务部门或安全和国防(例如因子分解)。实现量子计算优势的一个主要障碍是开发具有大量低噪声量子比特的系统。繁荣Partnership利用了一个独特的机会,将M Squared Lasers在先进激光系统和量子系统集成方面的能力与斯特拉斯克莱德大学的冷原子和量子算法专业知识相结合。我们的愿景是开发SQuAre(可扩展量子位阵列)-一种基于中性原子可重构阵列的量子计算和优化的有前途的架构,能够克服现有量子位架构的扩展限制。这种方法为可扩展的量子计算提供了一条极具竞争力的路线,大量相同的量子位能够执行高质量的量子门,正如最近的实验突破所证明的那样。我们的合作伙伴关系结合了关键的技能和知识,这是不可或缺的发展这一新的架构。我们将共同建立一个多功能的中性原子量子计算平台,使用高达100个量子位的可扩展阵列;开发新的算法和应用程序,通过直接与学术和工业最终用户合作,解决工业相关的计算和优化问题;创建一个软件架构,为从技术实现中抽象出来的量子硬件编程提供可访问的接口;- 在我们的硬件上进行算法的表征和基准测试,以证明量子计算的短期实用优势。拟议的研究计划将解决与优化问题的量子优势是否会随着系统规模的扩大而保留以及量子位缺陷如何影响获得理想解决方案的能力有关的重要开放问题。合作伙伴关系的早期利益将看到新的先进激光系统和实验控制硬件的开发,这将建立所需的供应链技术,以支持SQuAre平台未来的规模和商业化,在10年内达到1000个量子比特。这种繁荣合作伙伴关系在M Squared Lasers和斯特拉斯克莱德大学之间现有的战略关系中具有坚实的基础,开发和商业化新型量子和光子技术。繁荣伙伴关系将把我们的合作从全球竞争转变为国际领先,使英国在学术领导力、现实应用中的算法验证以及量子计算系统和组件的商业可用性方面处于快速增长的中性原子量子计算领域的最前沿。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multipartite entanglement measures via Bell basis measurements
通过贝尔基测量进行多部分纠缠测量
- DOI:10.48550/arxiv.2210.02575
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Beckey J
- 通讯作者:Beckey J
Onset of Scrambling as a Dynamical Transition in Tunable-Range Quantum Circuits
可调范围量子电路中作为动态转变的加扰的开始
- DOI:10.1103/prxquantum.4.030325
- 发表时间:2023
- 期刊:
- 影响因子:9.7
- 作者:Kuriyattil S
- 通讯作者:Kuriyattil S
Memory Efficient Meta-Learning with Large Images
- DOI:
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:J. Bronskill;Daniela Massiceti;Massimiliano Patacchiola;Katja Hofmann;Sebastian Nowozin;Richard E. Turner
- 通讯作者:J. Bronskill;Daniela Massiceti;Massimiliano Patacchiola;Katja Hofmann;Sebastian Nowozin;Richard E. Turner
Propagation of errors and quantitative quantum simulation with quantum advantage
- DOI:10.1088/2058-9565/ac88f5
- 发表时间:2022-04
- 期刊:
- 影响因子:6.7
- 作者:S. Flannigan;N. Pearson;G. Low;A. Buyskikh;I. Bloch;P. Zoller;M. Troyer;A. Daley
- 通讯作者:S. Flannigan;N. Pearson;G. Low;A. Buyskikh;I. Bloch;P. Zoller;M. Troyer;A. Daley
PRACTICAL CONDITIONAL NEURAL PROCESSES VIA TRACTABLE DEPENDENT PREDICTIONS
通过易于处理的相关预测进行实用的条件神经过程
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Markou S.
- 通讯作者:Markou S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Pritchard其他文献
Peering into the dark (ages) with low-frequency space interferometers
- DOI:
10.1007/s10686-021-09743-7 - 发表时间:
2021-09-03 - 期刊:
- 影响因子:2.200
- 作者:
Léon V. E. Koopmans;Rennan Barkana;Mark Bentum;Gianni Bernardi;Albert-Jan Boonstra;Judd Bowman;Jack Burns;Xuelei Chen;Abhirup Datta;Heino Falcke;Anastasia Fialkov;Bharat Gehlot;Leonid Gurvits;Vibor Jelić;Marc Klein-Wolt;Joseph Lazio;Daan Meerburg;Garrelt Mellema;Florent Mertens;Andrei Mesinger;André Offringa;Jonathan Pritchard;Benoit Semelin;Ravi Subrahmanyan;Joseph Silk;Cathryn Trott;Harish Vedantham;Licia Verde;Saleem Zaroubi;Philippe Zarka - 通讯作者:
Philippe Zarka
A spotlight on circular states
聚焦圆形状态
- DOI:
10.1038/s41567-022-01572-5 - 发表时间:
2022-03-24 - 期刊:
- 影响因子:18.400
- 作者:
Jonathan Pritchard - 通讯作者:
Jonathan Pritchard
Hydrogen was not ionized abruptly
氢不是突然电离的
- DOI:
10.1038/468772b - 发表时间:
2010-12-08 - 期刊:
- 影响因子:48.500
- 作者:
Jonathan Pritchard;Abraham Loeb - 通讯作者:
Abraham Loeb
Jonathan Pritchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Pritchard', 18)}}的其他基金
Quantum Error Correction in a dual-species Rydberg array (QuERy)
双物种里德堡阵列中的量子纠错 (QuERy)
- 批准号:
EP/X025055/1 - 财政年份:2023
- 资助金额:
$ 288.53万 - 项目类别:
Research Grant
Microwave and Terahertz Field Sensing and Imaging using Rydberg Atoms
使用里德堡原子进行微波和太赫兹场传感和成像
- 批准号:
EP/S015884/1 - 财政年份:2019
- 资助金额:
$ 288.53万 - 项目类别:
Research Grant
A Hybrid Atom-Photon-Superconductor Quantum Interface
混合原子-光子-超导量子接口
- 批准号:
EP/N003527/1 - 财政年份:2015
- 资助金额:
$ 288.53万 - 项目类别:
Fellowship
相似国自然基金
量子Qubit神经树网络模型的优化研究
- 批准号:61502283
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
High temperature spin selectivity in a quantum dot qubit
量子点量子位中的高温自旋选择性
- 批准号:
24K01289 - 财政年份:2024
- 资助金额:
$ 288.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum Hall plasmon resonator-based qubit sensing and multi-qubit coupling
基于量子霍尔等离子体谐振器的量子位传感和多量子位耦合
- 批准号:
24K06915 - 财政年份:2024
- 资助金额:
$ 288.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On-chip nuclear spin qubit platform based on individual erbium-167 ions in silicon photonic nanocavities for quantum repeaters
用于量子中继器的基于硅光子纳米腔中单个铒 167 离子的片上核自旋量子位平台
- 批准号:
23K26580 - 财政年份:2024
- 资助金额:
$ 288.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On-chip nuclear spin qubit platform based on individual erbium-167 ions in silicon photonic nanocavities for quantum repeaters
用于量子中继器的基于硅光子纳米腔中单个铒 167 离子的片上核自旋量子位平台
- 批准号:
23H01887 - 财政年份:2023
- 资助金额:
$ 288.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
- 批准号:
2240309 - 财政年份:2023
- 资助金额:
$ 288.53万 - 项目类别:
Standard Grant
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
- 批准号:
2317047 - 财政年份:2023
- 资助金额:
$ 288.53万 - 项目类别:
Standard Grant
Multi-qubit gates mediated by several strongly coupled motional modes
由几种强耦合运动模式介导的多量子位门
- 批准号:
2889918 - 财政年份:2023
- 资助金额:
$ 288.53万 - 项目类别:
Studentship
Superconducting qubit with a quantum memory
具有量子存储器的超导量子位
- 批准号:
2895174 - 财政年份:2023
- 资助金额:
$ 288.53万 - 项目类别:
Studentship
Wireless Controls and Readouts for Qubit Upscaling (WiQC)
用于量子位升级 (WiQC) 的无线控制和读数
- 批准号:
EP/X017613/1 - 财政年份:2023
- 资助金额:
$ 288.53万 - 项目类别:
Research Grant
スピンqubitを志向したS=1/2第一遷移金属導入ポリオキソタングステン酸の磁気物性
针对自旋量子位的S=1/2首个引入过渡金属的多钨酸的磁性能
- 批准号:
23K13769 - 财政年份:2023
- 资助金额:
$ 288.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists