A Hybrid Atom-Photon-Superconductor Quantum Interface

混合原子-光子-超导量子接口

基本信息

  • 批准号:
    EP/N003527/1
  • 负责人:
  • 金额:
    $ 95.69万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The field of quantum information arises from a desire to overcome the challenges of solving complex or intractable problems on classical computers by harnessing quantum mechanics to provide efficient and scalable algorithms. Whilst there has been tremendous recent progress in the realisation of small-scale quantum circuits comprising several quantum bits (``qubits''), research indicates that a fault-tolerant quantum computer capable of harnessing the power of quantum mechanics will require a network of thousands of qubits. This goal is presently beyond the reach of any existing implementation based on a single physical qubit type.Hybrid quantum information processing is an alternative approach that exploits the unique strengths of disparate quantum technologies, and offers a route to overcome the drawbacks associated with of a single-qubit architecture in direct analogy to the design of classical computing hardware. This proposal aims to combine three different technologies: i) Superconducting circuits, with very fast (10 ns) gate times for fast processing, ii) Neutral atoms, with long (10 s) coherence times for long lived quantum memory, iii) Optical photons, for long distance fibre communication,to create a novel hybrid quantum interface capable of storing, processing and generating highly entangled states of photons for quantum networking and cryptography applications, overcoming the short coherence time associated with the scalable superconducting circuit systems. This also offers applications in quantum metrology for conversion from optical to microwave domain quantum information, making it possible to extend the interface to incorporate a wide range of alternative solid-state based qubits.The interface relies on use of highly excited Rydberg states, which have incredibly large dipole moments and transitions in the microwave regime, which can resonantly couple to superconducting qubits embedded in planar microwave waveguide cavities. The large Rydberg dipole also leads to strong, controllable interactions between atoms to provide a collective enhancement in the coupling to single photons for efficient storage and retrieval of light.The first stage of the experiment is to trap spatially addressable atomic ensembles above a superconducting microwave resonator operating at 4 K to demonstrate strong coupling to the waveguide mode, a key milestone for implementing the hybrid interface. The ensembles will then be utilised to perform coherent storage and retrieval of optical photons, as well as generation of single photons using four-wave mixing. The second stage is to exploit the off-resonant interaction with the cavity to achieve controllable long distance (~1 cm) entanglement between a pair of ensembles trapped within a single microwave resonator. This will then be used to generate entangled photon pairs, exploring the benefits of collective encoding within the ensembles for achieving entanglement in the polarisation degrees of freedom for long-distance cryptographic quantum key distribution. The resulting hybrid quantum interface provides an ideal building block for establishing quantum networks. Long term this can be integrated with existing superconducting qubit technologies, making a significant step towards the realisation of scalable quantum computing.
量子信息领域的出现是因为人们希望通过利用量子力学来提供高效和可扩展的算法,从而克服在经典计算机上解决复杂或棘手问题的挑战。虽然最近在实现包括几个量子比特(“量子比特”)的小规模量子电路方面取得了巨大进展,但研究表明,能够利用量子力学的容错量子计算机将需要数千个量子比特的网络。混合量子信息处理是一种利用不同量子技术的独特优势的替代方法,它提供了一种克服与经典计算硬件设计直接类似的单量子位架构相关的缺点的途径。该提案旨在将联合收割机三种不同的技术结合起来:i)超导电路,具有用于快速处理的非常快(10 ns)的门时间,ii)中性原子,具有用于长寿命量子存储器的长(10 s)相干时间,iii)光学光子,用于长距离光纤通信,以创建能够存储的新型混合量子接口,处理和产生用于量子网络和密码学应用的光子的高度纠缠态,克服与可扩展超导电路系统相关联的短相干时间。这也为量子计量学提供了从光域到微波域量子信息转换的应用,使得扩展界面以包含广泛的替代固态量子比特成为可能。该界面依赖于使用高度激发的里德伯态,其在微波区具有令人难以置信的大偶极矩和跃迁,其可以谐振耦合到嵌入在平面微波波导腔中的超导量子位。大的里德伯偶极子也导致原子之间的强,可控的相互作用,提供一个集体增强耦合到单个光子的有效存储和检索的光。实验的第一阶段是在超导微波谐振器上运行在4 K的空间可寻址的原子系综陷阱,以证明强耦合到波导模式,实现混合接口的一个关键里程碑。然后,将利用这些集合来执行光学光子的相干存储和检索,以及使用四波混频产生单光子。第二阶段是利用与腔的非共振相互作用来实现被捕获在单个微波谐振器内的一对系综之间的可控长距离(~ 1cm)纠缠。然后,这将被用来生成纠缠光子对,探索合奏内的集体编码的好处,以实现长距离加密量子密钥分发的偏振自由度的纠缠。由此产生的混合量子接口为建立量子网络提供了理想的构建块。从长远来看,这可以与现有的超导量子比特技术集成,朝着实现可扩展的量子计算迈出重要一步。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Demonstration of a Quantum Gate Using Electromagnetically Induced Transparency.
  • DOI:
    10.1103/physrevlett.129.200501
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    K. McDonnell;L. Keary;J. Pritchard
  • 通讯作者:
    K. McDonnell;L. Keary;J. Pritchard
Sub-kHz excitation lasers for Quantum Information Processing with Rydberg atoms
用于里德伯原子量子信息处理的亚 kHz 激发激光器
  • DOI:
    10.48550/arxiv.1711.02645
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Legaie R
  • 通讯作者:
    Legaie R
Strong coupling and active cooling in a finite temperature hybrid atom-cavity system
有限温度混合原子腔系统中的强耦合和主动冷却
  • DOI:
    10.48550/arxiv.2108.01386
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keary L
  • 通讯作者:
    Keary L
Demonstration of a Quantum Gate using Electromagnetically Induced Transparency
使用电磁感应透明的量子门演示
  • DOI:
    10.48550/arxiv.2204.03733
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McDonnell K
  • 通讯作者:
    McDonnell K
Hybrid quantum devices: Guest editorial
  • DOI:
    10.1063/5.0057740
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Y. Chu;J. Pritchard;Hailin Wang;M. Weides
  • 通讯作者:
    Y. Chu;J. Pritchard;Hailin Wang;M. Weides
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Pritchard其他文献

Peering into the dark (ages) with low-frequency space interferometers
  • DOI:
    10.1007/s10686-021-09743-7
  • 发表时间:
    2021-09-03
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Léon V. E. Koopmans;Rennan Barkana;Mark Bentum;Gianni Bernardi;Albert-Jan Boonstra;Judd Bowman;Jack Burns;Xuelei Chen;Abhirup Datta;Heino Falcke;Anastasia Fialkov;Bharat Gehlot;Leonid Gurvits;Vibor Jelić;Marc Klein-Wolt;Joseph Lazio;Daan Meerburg;Garrelt Mellema;Florent Mertens;Andrei Mesinger;André Offringa;Jonathan Pritchard;Benoit Semelin;Ravi Subrahmanyan;Joseph Silk;Cathryn Trott;Harish Vedantham;Licia Verde;Saleem Zaroubi;Philippe Zarka
  • 通讯作者:
    Philippe Zarka
A spotlight on circular states
聚焦圆形状态
  • DOI:
    10.1038/s41567-022-01572-5
  • 发表时间:
    2022-03-24
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Jonathan Pritchard
  • 通讯作者:
    Jonathan Pritchard
Hydrogen was not ionized abruptly
氢不是突然电离的
  • DOI:
    10.1038/468772b
  • 发表时间:
    2010-12-08
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Jonathan Pritchard;Abraham Loeb
  • 通讯作者:
    Abraham Loeb

Jonathan Pritchard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Pritchard', 18)}}的其他基金

Quantum Error Correction in a dual-species Rydberg array (QuERy)
双物种里德堡阵列中的量子纠错 (QuERy)
  • 批准号:
    EP/X025055/1
  • 财政年份:
    2023
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Research Grant
Scalable Qubit Arrays for Quantum Computing and Optimisation
用于量子计算和优化的可扩展量子位阵列
  • 批准号:
    EP/T005386/1
  • 财政年份:
    2020
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Research Grant
Microwave and Terahertz Field Sensing and Imaging using Rydberg Atoms
使用里德堡原子进行微波和太赫兹场传感和成像
  • 批准号:
    EP/S015884/1
  • 财政年份:
    2019
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Research Grant

相似国自然基金

1keV/atom以下的团簇离子注入固体极浅表面的过程研究
  • 批准号:
    11075076
  • 批准年份:
    2010
  • 资助金额:
    42.0 万元
  • 项目类别:
    面上项目

相似海外基金

Heavy-Atom-Free Sensitizers for NIR-to-Visible Solar Photon Upconversion
用于近红外到可见太阳光子上转换的无重原子敏化剂
  • 批准号:
    2312480
  • 财政年份:
    2023
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Standard Grant
Mathematical Research on Deep-Strong Coupling Regime of Interaction between Artificial Atom and Photon in Circuit QED
电路QED中人造原子与光子相互作用深强耦合机制的数学研究
  • 批准号:
    20K03768
  • 财政年份:
    2020
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Micro cavities for efficient atom-photon coupling by quantum-electrodynamic effects (project supervised by A. Kuhn, Oxford, including secondments
通过量子电动力学效应实现高效原子-光子耦合的微腔(项目由牛津大学 A. Kuhn 监督,包括借调)
  • 批准号:
    1791703
  • 财政年份:
    2016
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Studentship
Novel 2-photon atom manipulation for ultra-nanoscale processing of diamond
用于金刚石超纳米级加工的新型 2 光子原子操纵
  • 批准号:
    DP150102054
  • 财政年份:
    2015
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Discovery Projects
Atom-Photon Entanglement and Functional Quantum Network Nodes with Atomic Ensembles
原子光子纠缠和具有原子系综的功能量子网络节点
  • 批准号:
    1521374
  • 财政年份:
    2015
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Continuing Grant
Rydberg Blockaded Ensemble Qubits and Atom-Photon Quantum Interfaces
里德堡封锁系综量子位和原子光子量子接口
  • 批准号:
    1104531
  • 财政年份:
    2011
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Continuing Grant
Manipulating photon-atom interactions with atomic coherence and interference
利用原子相干性和干涉来操纵光子与原子的相互作用
  • 批准号:
    0757984
  • 财政年份:
    2008
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Continuing Grant
Single Photon and Single Atom Sources for Quantum Information Processing
用于量子信息处理的单光子和单原子源
  • 批准号:
    0218341
  • 财政年份:
    2002
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Continuing Grant
Strong Atom-Photon Interaction for Microphotonic Devices
微光子器件的强原子-光子相互作用
  • 批准号:
    0085680
  • 财政年份:
    2000
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Standard Grant
Theoretical studies in atom-photon interactions: multiatom, multilevel, and multiphoton transitions
原子-光子相互作用的理论研究:多原子、多能级和多光子跃迁
  • 批准号:
    4618-1998
  • 财政年份:
    2000
  • 资助金额:
    $ 95.69万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了