Efficient Spectral Algorithms for Massive and Dynamic Graphs

适用于海量动态图的高效谱算法

基本信息

  • 批准号:
    EP/T00729X/1
  • 负责人:
  • 金额:
    $ 153.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Spectral graph theory investigates the algebraic properties of matrices associated with graphs. Over the past 20 years, studies in spectral graph theory have successfully overcome fundamental bottlenecks faced by combinatorial algorithms, and have become a major research focus in theoretical computer science, machine learning, and network analysis. In particular, some recent breakthrough results show that spectral techniques can be applied to solve central optimisation and learning problems in nearly-linear time. Designing such highly efficient algorithms is crucial to cope with the emergence of massive graphs and real-time data sets coming from technological, social and biological networks. In this fellowship I propose three research directions to advance the studies of spectral algorithms and their applications in data science: (1) I propose to advance our understanding of fundamental spectral techniques by studying the spectral properties of different matrices representing directed graphs, and exploring new connections between graphs and other mathematical objects, e.g., manifolds studied in geometry; (2) I propose to investigate new spectral algorithms for two fundamental graph problems in different settings, and further improve the state-of-the-art of the two problems with respect to the algorithms' runtime and performance; (3) spectral algorithms vastly outperform combinatorial algorithms with respect to their runtime in the worst case, however the design of most spectral algorithms usually involve many procedures, which bring the issue of numerical stability for efficient implementations. To address this I propose to develop an open-source algorithmic library for spectral algorithms so that by the end of the fellowship data scientists would be able to use the state-of-the-art algorithms for spectral sparsification and graph clustering in a black box manner.A successful completion of the fellowship will make a significant step towards understanding the power and limits of the algebraic techniques in designing fast graph algorithms in various settings, and the performance of nearly-linear time spectral algorithms in real world data sets.
谱图论研究与图相关的矩阵的代数性质。在过去的20年里,谱图理论的研究已经成功地克服了组合算法所面临的基本瓶颈,并已成为理论计算机科学,机器学习和网络分析的主要研究热点。特别是,最近的一些突破性的结果表明,频谱技术可以应用于解决中央优化和学习问题,在近线性时间。设计这种高效的算法对于科普来自技术,社会和生物网络的大量图表和实时数据集的出现至关重要。在这个奖学金中,我提出了三个研究方向,以推进谱算法及其在数据科学中的应用的研究:(1)我建议通过研究表示有向图的不同矩阵的谱特性,并探索图与其他数学对象之间的新联系,例如,几何学中研究的流形;(2)针对两个基本图问题,提出了新的谱算法,并在算法的运行时间和性能方面进一步提高了这两个问题的研究水平;(3)在最坏的情况下,谱算法的运行时间大大优于组合算法,但大多数谱算法的设计通常涉及许多过程,这带来了有效实现的数值稳定性的问题。为了解决这个问题,我建议为光谱算法开发一个开源算法库,以便在研究金结束时,数据科学家能够使用最先进的艺术算法的频谱稀疏化和图聚类在黑盒的方式。奖学金的成功完成将使一个重要的一步,了解权力和限制的代数技术在设计快速图算法,各种设置,以及近线性时间谱算法在真实的世界数据集中的性能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Augmenting the Algebraic Connectivity of Graphs
  • DOI:
    10.4230/lipics.esa.2020.70
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bogdan-Adrian Manghiuc;Pan Peng;He Sun
  • 通讯作者:
    Bogdan-Adrian Manghiuc;Pan Peng;He Sun
Finding Bipartite Components in Hypergraphs
  • DOI:
    10.48550/arxiv.2205.02771
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Macgregor
  • 通讯作者:
    Peter Macgregor
Higher-Order Spectral Clustering of Directed Graphs
  • DOI:
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steinar Laenen;He Sun
  • 通讯作者:
    Steinar Laenen;He Sun
Local Algorithms for Finding Densely Connected Clusters
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Macgregor;He Sun
  • 通讯作者:
    Peter Macgregor;He Sun
A Tighter Analysis of Spectral Clustering, and Beyond
对谱聚类及其他方面进行更严格的分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Macgregor P
  • 通讯作者:
    Macgregor P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

He Sun其他文献

Fast real-time semantic segmentation for autonomous driving
自动驾驶的快速实时语义分割
Home and school factors in early English language development
早期英语语言发展中的家庭和学校因素
Runoff regime, change, and attribution in the upper Syr Darya and Amu Darya, Central Asia
中亚锡尔河和阿姆河上游的径流动态、变化和归因
  • DOI:
    10.1175/jhm-d-22-0036.1
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Jingheng Huang;Fengge Su;T;ong Yao;He Sun
  • 通讯作者:
    He Sun
Individual differences in very young Chinese children’s English vocabulary breadth and semantic depth: internal and external factors
中国幼儿英语词汇广度和语义深度的个体差异:内部和外部因素
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    He Sun;Rasmus Steinkrauss;Martijn B. Wieling;K. de Bot
  • 通讯作者:
    K. de Bot
Maternal heritage language proficiency and child bilingual heritage language learning
母系传承语言能力与儿童双语传承语言学习

He Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
  • 批准号:
    2212370
  • 财政年份:
    2022
  • 资助金额:
    $ 153.63万
  • 项目类别:
    Continuing Grant
Autonomous spectral fingerprinting of consumable oil adulteration via terahertz time-domain spectroscopy and classification algorithms for real time food processing safety and quality assurance.
通过太赫兹时域光谱和分类算法对食用油掺假进行自主光谱指纹识别,以实现实时食品加工安全和质量保证。
  • 批准号:
    560133-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 153.63万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
LEAPS-MPS: A Systematic and Automatic Spectral Analysis of Physical Conditions of Circumgalactic Medium using Genetic Algorithms;
LEAPS-MPS:使用遗传算法对环绕银河系介质的物理条件进行系统自动光谱分析;
  • 批准号:
    2213494
  • 财政年份:
    2022
  • 资助金额:
    $ 153.63万
  • 项目类别:
    Standard Grant
Spectral encoding and machine learning algorithms for photonic convolutional neural networks
光子卷积神经网络的光谱编码和机器学习算法
  • 批准号:
    572906-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 153.63万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
  • 批准号:
    2212371
  • 财政年份:
    2022
  • 资助金额:
    $ 153.63万
  • 项目类别:
    Continuing Grant
Autonomous spectral fingerprinting of consumable oil adulteration via terahertz time-domain spectroscopy and classification algorithms for real time food processing safety and quality assurance.
通过太赫兹时域光谱和分类算法对食用油掺假进行自主光谱指纹识别,以实现实时食品加工安全和质量保证。
  • 批准号:
    560133-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 153.63万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigation of machine-learning chemometric algorithms for spectral classification
用于光谱分类的机器学习化学计量算法的研究
  • 批准号:
    563863-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 153.63万
  • 项目类别:
    University Undergraduate Student Research Awards
New Sampling Algorithms and Inverse Spectral Methods in Scattering
散射中的新采样算法和逆谱方法
  • 批准号:
    2107891
  • 财政年份:
    2021
  • 资助金额:
    $ 153.63万
  • 项目类别:
    Standard Grant
Spectral Algorithms for Massive Graphs
海量图谱算法
  • 批准号:
    2590711
  • 财政年份:
    2021
  • 资助金额:
    $ 153.63万
  • 项目类别:
    Studentship
AF: Small: Spectral and SDP Techniques: Average-Case Analysis and Subexponential Algorithms
AF:小:谱和 SDP 技术:平均情况分析和次指数算法
  • 批准号:
    1815434
  • 财政年份:
    2018
  • 资助金额:
    $ 153.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了