Nanostar Sieving for Oligonucleotides Manufacture (NanoSieveOligo)

用于寡核苷酸生产的 Nanostar 筛分 (NanoSieveOligo)

基本信息

  • 批准号:
    EP/T00827X/1
  • 负责人:
  • 金额:
    $ 71.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Oligonucleotide (oligo) medicines work by modulating the expression of proteins and the functioning of genes. There are now 9 approved oligo drugs on the market and many more in development, and there is a growing need for an efficient manufacturing technology to make these high value molecules. This project will explore whether a new manufacturing concept for precise polymers, Nanostar Sieving, can be adapted to produce oligo molecules.Nature makes oligos by joining different monomers (nucelotides) in a prescribed sequence. The exact order of the nucleotides is absolutely crucial to the oligo function. Oligos are made industrially by sequential addition of monomers to growing oligos, taking care to remove residual, unreacted monomer before the next cycle, so that there are no errors in the sequence. This requires excellent separation at the end of each coupling cycle. A very effective way of doing this is to attach the growing oligo to a solid support, which is washed with clean solvents to remove residuals, before the next nucleotide is added. When oligo growth is complete, it is cleaved from the solid support. All other side chain protecting groups are then removed, and we proceed to test the purity of the final oligo - have all the required nucleotides been added? Often there are "missing" monomers because the reactions on the solid support did not go to completion, and it is typical to find 60-80% of the desired n-mer oligo, together with a "ladder" of n-1, n-2, n-3 mer shorter oligos which are missing 1, 2, 3 or more nucleotides. The ladder must be removed, and this requires extensive, and expensive, chromatography.Solid Phase Oligo Synthesis is a great tool for rapidly making lots of oligos in the lab, but has drawbacks for manufacturing hundreds of kg or even multi-ton quantities per year. The three major problems are: (i) one cannot know the extent of each reaction easily, because in-line analysis cannot be done on the solid phase; (ii) as the oligo grows, the space for the fresh nucleotides to diffuse in and react gets tight - leading to incomplete couplings and so n-1, n-2 errors; and, (iii) it is hard to scale up the solid beds.Research at Imperial College has pioneered Organic Solvent Nanofiltration (OSN), using membranes that are stable in organic solvents to separate small molecules from large molecules. These membranes have been commercialised, and are manufactured in the UK and employed globally in industries ranging from petrochemicals to pharmaceutical manufacture. Using OSN membranes, we have recently developed a new process, Nanostar Sieving. The key innovation is to use OSN membranes to separate a growing polymer from unreacted monomers. This is carried out in the liquid phase and analysis is relatively straightforward. By connecting three growing polymers to a central hub molecule, we create a large nanostar complex, enhancing membrane retention and promoting efficient separation. We have used Nanostar Sieving to produce PEG, a synthetic polymer used widely for medicines, with unprecedented control over purity.We have not yet been successful at making oligos using Nanostar Sieving, and to do so have to overcome a number of challenges. Here we seek to address these challenges - (i) to improve our membranes with surface modifying ligands; (ii) to use in-line analysis with UV-Vis and 31P NMR to optimise reactions end ensure they reach completion; and (iii) to maintain the solubility of the nanostar complex as the oligos grow in length, without the need for mixed solvents, by developing phosphoramidite monomers with new, solubility-enhancing side chain protecting groups. Our "stretch" goal will be to use the technology to attach targeting moieties to enhance drug delivery. If we are successful, the project will result in a new technology for oligo manufacture, and will lead to purer, and more cost-effective oligos becoming available at scale for applications in healthcare and beyond.
寡核苷酸(oligo)药物通过调节蛋白质的表达和基因的功能发挥作用。现在市场上有9种已批准的寡聚药物,还有更多的药物正在开发中,人们越来越需要一种高效的制造技术来制造这些高价值的分子。该项目将探索精密聚合物的新制造概念Nanostar Sieving是否适用于生产寡聚分子。大自然通过将不同的单体(nucelotide)按规定的顺序连接在一起来制造寡聚物。核苷酸的确切顺序对寡核苷酸的功能至关重要。寡聚物在工业上是通过向生长的寡聚物中顺序添加单体来制备的,在下一个循环之前小心去除残留的、未反应的单体,以便序列中没有错误。这需要在每个耦合周期结束时进行出色的分离。一种非常有效的方法是将生长中的寡核苷酸附着在固体载体上,在加入下一个核苷酸之前,用干净的溶剂洗涤固体载体以去除残留物。当寡聚物生长完成时,将其从固体支持物上裂解。然后去除所有其他侧链保护基团,我们继续测试最终寡核苷酸的纯度-是否添加了所有所需的核苷酸?通常存在“缺失的”单体,因为在固体支持物上的反应没有完成,并且通常发现60-80%的所需n聚体寡核苷酸,以及缺失1、2、3或更多个核苷酸的n-1、n-2、n-3聚体较短寡核苷酸的“梯”。必须去除阶梯,这需要大量且昂贵的色谱法。固相寡聚物合成是在实验室中快速制备大量寡聚物的重要工具,但每年生产数百公斤甚至数吨的量存在缺点。三大问题是:(ii)随着寡核苷酸的生长,用于新鲜核苷酸扩散和反应的空间变紧-导致不完全偶联,因此产生n-1、n-2个错误;以及,(iii)难以按比例放大固体床。帝国理工学院的研究开创了有机溶剂纳滤(OSN),使用在有机溶剂中稳定的膜将小分子与大分子分离。这些膜已经商业化,在英国制造,并在全球范围内用于从石油化工到制药制造的行业。使用OSN膜,我们最近开发了一种新的工艺,Nanostar筛分。关键的创新是使用OSN膜将生长的聚合物与未反应的单体分离。这是在液相中进行的,分析相对简单。通过将三种生长的聚合物连接到一个中心分子上,我们创造了一个大型的纳米星复合物,增强了膜的保留能力,促进了有效的分离。我们已经使用Nanostar Sieving生产PEG,这是一种广泛用于药物的合成聚合物,对纯度进行了前所未有的控制。我们尚未成功地使用Nanostar Sieving生产寡核苷酸,并且必须克服许多挑战。在这里,我们寻求解决这些挑战-(i)用表面改性配体改善我们的膜;(ii)使用UV-Vis和31 P NMR的在线分析来优化反应并确保它们达到完成;和(iii)通过开发具有新的,溶解度增强侧链保护基团。我们的“延伸”目标将是使用该技术连接靶向部分以增强药物递送。如果我们成功,该项目将为寡核苷酸制造带来一种新技术,并将导致更纯净,更具成本效益的寡核苷酸在医疗保健等领域的应用中大规模可用。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Liquid Phase Peptide Synthesis via One-Pot Nanostar Sieving (PEPSTAR)
通过一锅式 Nanostar 筛分法 (PEPSTAR) 进行液相肽合成
  • DOI:
    10.1002/ange.202014445
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yeo J
  • 通讯作者:
    Yeo J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Livingston其他文献

The 15th annual meeting of the pavlovian society
  • DOI:
    10.1007/bf03000290
  • 发表时间:
    1976-04-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Roscoe A. Dykman;R. D. Ray;F. J. McGuigan;W. N. Schoenfeld;A. M. Washton;J. C. McMillan;R. M. Kadden;J. C. Lamb;J. P. Isaacs;J. E. O. Newton;J. L. Chapin;R. Rogozea;V. Florea-Ciocoiu;A. Kreindler;Nelson Hendler;Andrew Livingston;O. J. Andy;L. Guirintano;S. Guirintano;T. McDonald;P. Simpson;David C. Randall;Joseph V. Brady;Kris H. Martin;A. M. Prestrude;William P. Paré;D. A. Brown;J. F. Greenspan;T. A. Ban;H. E. Lehmann;Mikhail M. Khananashvili
  • 通讯作者:
    Mikhail M. Khananashvili
Inability to condition a peripheral activating drug
SABR for Sarcoma Lung Metastases: Indications for Treatment and Guidance for Patient Selection
肉瘤肺转移的 SABR:治疗指征和患者选择指南
  • DOI:
    10.1016/j.ijrobp.2023.10.017
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Ahsan S. Farooqi;Alison K. Yoder;Heather Y. Lin;Dario Pasalic;Jeremy Erasmus;Sonia Betancourt;Cort Wernz;Devarati Mitra;Maria A. Zarzour;Neeta Somaiah;Anthony Conley;Ravin Ratan;Andrew Livingston;Dejka M. Araujo;Christina Roland;Christopher Scally;Emily Keung;Saumil N. Gandhi;B. Ashleigh Guadagnolo;Quynh-Nhu Nguyen;Andrew J. Bishop
  • 通讯作者:
    Andrew J. Bishop
An attempt to condition components of urine formation in dogs
Papers presented at the Tenth Annual Meeting of the Pavlovian Society of North AmericaOctober 31-November 1,1969 Princeton, N. J.
  • DOI:
    10.1007/bf03000251
  • 发表时间:
    1970-07-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    M. B. Sterman;J. J. Lynch;M. T. Orne;D. Paskewitz;J. Costello;N. Nicolov;O. Diankov;M. Popova;E. Tsvetanska;Robert G. Grenell;J. J. Izquierdo;V. H. Mark;Joseph Germana;N. Zill;William P. Paré;Joseph E. O. Newton;George C. Offutt;Walter Ehrlich;Joseph E. D. Newton;Julij Tosef;J. Perez-Cruet;Chester R. Wilpizeski;John F. Lontz;Andrew Livingston;Joseph W. Cullen;Samuel A. Corson;Herman R. Weed;Elizabeth O. Corson;O. D. Murphree;Paul N. Morgan;Ruth Jarman;J. Antal;T. A. Ban;J. V. Ananth;H. E. Lehmann;A. Ulric Moore;Richard H. Barnes;Wilson G. Pond
  • 通讯作者:
    Wilson G. Pond

Andrew Livingston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Livingston', 18)}}的其他基金

Nanostar Sieving for Oligonucleotides Manufacture (NanoSieveOligo)
用于寡核苷酸生产的 Nanostar 筛分 (NanoSieveOligo)
  • 批准号:
    EP/T00827X/2
  • 财政年份:
    2021
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
System Builders - Device Assembly from Nanoporous Materials Developed from Current Platform Grant (EP/J014974/1)
系统构建商 - 利用当前平台资助开发的纳米多孔材料进行设备组装 (EP/J014974/1)
  • 批准号:
    EP/R029180/2
  • 财政年份:
    2021
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
System Builders - Device Assembly from Nanoporous Materials Developed from Current Platform Grant (EP/J014974/1)
系统构建商 - 利用当前平台资助开发的纳米多孔材料进行设备组装 (EP/J014974/1)
  • 批准号:
    EP/R029180/1
  • 财政年份:
    2018
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
CBET-EPSRC A Game-Changing Approach for Tunable Membrane Development: Novel COF Active Layers Supported by Solvent Resistant Materials
CBET-EPSRC 可调膜开发的颠覆性方法:耐溶剂材料支持的新型 COF 活性层
  • 批准号:
    EP/R018847/1
  • 财政年份:
    2017
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
Rosalind Franklin Institute : Establishment Phase
罗莎琳德·富兰克林研究所:建立阶段
  • 批准号:
    EP/R029164/1
  • 财政年份:
    2017
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
Isothermal Refining by Organic Solvent Nanofiltration - ISOREF
有机溶剂纳滤等温精炼 - ISOREF
  • 批准号:
    EP/M013693/1
  • 财政年份:
    2015
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
Iterative Synthesis with Organic Solvent Nanofiltration for Precision Manufacture of High Value Sequence-Controlled Polymers (ItSyN)
有机溶剂纳滤迭代合成用于精密制造高价值序列控制聚合物 (ItSyN)
  • 批准号:
    EP/M003949/1
  • 财政年份:
    2015
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
Queen Mary University of London - Equipment Account
伦敦玛丽女王大学 - 设备账户
  • 批准号:
    EP/M507246/1
  • 财政年份:
    2014
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
Molecular Builders: Constructing Nanoporous Materials
分子构建剂:构建纳米多孔材料
  • 批准号:
    EP/J014974/1
  • 财政年份:
    2012
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
ELSEP - Elucidate and Separate - Palladium Catalysts in C-C and C-N Coupling Reactions
ELSEP - 阐明和分离 - C-C 和 C-N 偶联反应中的钯催化剂
  • 批准号:
    EP/G070172/1
  • 财政年份:
    2009
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant

相似海外基金

AltOligo: Alternative chemistry for oligonucleotide synthesis using Nanostar Sieving
AltOligo:使用 Nanostar 筛分合成寡核苷酸的替代化学方法
  • 批准号:
    10062368
  • 财政年份:
    2023
  • 资助金额:
    $ 71.63万
  • 项目类别:
    EU-Funded
Responsive Metal-organic Framework Glass Membranes for Molecular Sieving
用于分子筛分的响应式金属有机框架玻璃膜
  • 批准号:
    DP230101901
  • 财政年份:
    2023
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Discovery Projects
Nanostar Sieving for multifunctional ADC Linkers: NanoLink
用于多功能 ADC 连接器的 Nanostar 筛分:NanoLink
  • 批准号:
    10043819
  • 财政年份:
    2023
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Collaborative R&D
CAREER: Real-Time, Selective Gas Sensing in Complex Gas Compositions by Molecular Sieving via Robust Two-Dimensional Heterostructures
职业:通过稳健的二维异质结构进行分子筛分,对复杂气体成分进行实时、选择性气体传感
  • 批准号:
    2145549
  • 财政年份:
    2022
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Continuing Grant
Nanocomposite membranes functionalized with facilitated transport and molecular sieving for challenging gas separations
具有促进传输和分子筛功能的纳米复合膜,可用于具有挑战性的气体分离
  • 批准号:
    RGPIN-2019-04186
  • 财政年份:
    2022
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Sieving Nanoarchitectures of Carbon Nanosheets Coordinated with Metal-Organic Clusters
与金属有机簇配位的碳纳米片的分子筛纳米结构
  • 批准号:
    22K04873
  • 财政年份:
    2022
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cyclic sieving phenomena
循环筛分现象
  • 批准号:
    573835-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 71.63万
  • 项目类别:
    University Undergraduate Student Research Awards
Nanostar Sieving for Oligonucleotides Manufacture (NanoSieveOligo)
用于寡核苷酸生产的 Nanostar 筛分 (NanoSieveOligo)
  • 批准号:
    EP/T00827X/2
  • 财政年份:
    2021
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Research Grant
Nanocomposite membranes functionalized with facilitated transport and molecular sieving for challenging gas separations
具有促进传输和分子筛功能的纳米复合膜,可用于具有挑战性的气体分离
  • 批准号:
    RGPIN-2019-04186
  • 财政年份:
    2021
  • 资助金额:
    $ 71.63万
  • 项目类别:
    Discovery Grants Program - Individual
Cyclic Sieving Phenomena for Symplectic and Orthogonal Tableaux
辛和正交表的循环筛分现象
  • 批准号:
    564962-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 71.63万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了